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Abstract

The identification of anomalous observations provides insight into which aspects
of the modeling process may be vulnerable. Thus, appropriate diagnostic mea-
sures can be developed to prevent certain types of outlying observations from
going undetected. This paper proposes an approach to assess the influence
diagnostics in ridge regression based on the Kullback-Leibler divergence. To
quantify the impact of observations on the ridge estimator two main proce-
dures are explored. Namely, a case-deletion method and the local influence
technique considering several perturbation schemes. We provide tractable expres-
sions to assessing the influence of individual observations as well as the derivatives
required to characterize the local curvature. The developed measures correspond
to a combination of the leverages and the volume of the confidence ellipsoid,
which allows an interesting characterization of the detected observations. To eval-
uate the performance of the proposed methodology, we consider the analysis of
two real datasets and performed a comparison with several methods for outlier
detection and assessing influence in ridge regression. In such numerical exam-
ples, the proposed measures are successful in identifying observations that are
not detected by the traditional techniques.∗
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1 Introduction

A biased estimation procedure that has been quite successful to overcome the effects of
collinearity in regression corresponds to ridge regression (Hoerl and Kennard, 1970).
However, a number of papers have shown that the ridge estimator is extremely sensitive
to the presence of extreme observations (see for instance Walker and Birch, 1988; Billor
and Loynes, 1999; Shi andWang, 1999; Emami and Emami, 2016). The techniques used
for the development of procedures for outliers detection and assessing the influence
of observations in ridge regression have been quite diverse. For instance, diagnostic
measures based on case-deletion procedures were proposed by Walker and Birch (1988)
and more recently in Emami and Emami (2016), whereas the properties of statistical
leverage were studied by Steece (1986). On the other hand, Billor and Loynes (1999)
and Shi and Wang (1999) developed the local influence in ridge regression based on a
pseudo-likelihood for an augmented model and considering the approach of generalized
influence function proposed by Shi (1997), respectively. One aspect that should be
emphasized is that techniques based on case-deletion, or global influence, have been
criticized because they tend to suffer from masking and swamping effects. This problem
arises when it is desired to evaluate the joint effect of multiple observations. Indeed,
masking has been described as the effect that occurs when groups of observations may
not be identified as outliers due to the presence of observations that are individually
extreme, while the swamping effect appears when observations are incorrectly labeled
as outliers (Meloun and Militký, 2001; Chatterjee and Hadi, 1988). For a formalization
of these concepts, see Davies and Gather (1993). This has led to the development
of procedures where, instead of eliminating observations, they concentrate on the
perturbation of observations or of certain relevant aspects of the model and evaluate
their influence on some statistic of interest (see, for instance Pregibon, 1981). This
diagnostic procedure was introduced by Cook (1986), is known as the local influence
method and has proven to be an extremely flexible tool for determining influential
observations that has gained considerable popularity in the statistical literature.

The literature on the use of divergence measures as an input for influence diagnos-
tics is quite limited. To the best of our knowledge, Johnson and Geisser (1983) and
Johnson (1985) were the first to use the Kullback-Leibler divergence to propose mea-
sures of influence in linear regression and logistic regression, respectively. Whereas,
Geisser (1996) in the discussion of the paper by Cook (1986), was who first proposed
to consider the Kullback-Leibler divergence to perform the local influence diagnostics
from a Bayesian perspective, an idea that was later formalized and applied in linear
regression by Shi and Wei (1995). This approach has been successfully used for the
assessment of Bayesian local influence in growth curve models by Pan et al. (1996,
1999) and Pan and Fung (2000). More recently, Garćıa-Heras et al. (2006) and Muñoz-
Garćıa et al. (2006) have considered a general class of divergence measures to propose
influence measures based on case-deletion.

The main aim of this paper is to develop the influence diagnostics considering the
case-deletion technique as well as the local influence procedure based on the Kullback-
Leibler divergence which is a diagnostic measure that incorporates two aspects, i.e.,
the prediction matrix, and the volume of the confidence ellipsoid for the ridge regres-
sion framework. Thus, the proposed methodology complements traditional diagnostic
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procedures. Additionally, such developments may lead to interesting extensions of the
proposed technique to more complex models such as the one introduced in Emami
(2018) or to carry out diagnostic analyses in elliptically contoured regression models
(Liu, 2000; Galea et al., 2003). In Section 2 we describe some case-deletion diagnostics
in ridge regression and present details of the local influence procedure. Section 3 is
devoted to provide the main results associated with the Kullback-Leibler divergence-
based influence diagnostics. Section 4 presents the analysis of two real datasets
commonly used in the literature and reports the results of a simulation study to eval-
uate the performance of the proposed methodology on finite samples. Finally, Section
5 presents concluding remarks and perspectives for future work. For comparison, the
local influence based on the penalized likelihood displacement is presented in the
Appendix. Additionally, we examine whether each perturbation scheme is appropriate
in the sense outlined by Zhu et al. (2007).

2 Background and definition

Consider the linear regression model

Y = Xβ + ϵ, (1)

where Y is an n×1 vector of observations, X is an n×p model matrix with rk(X) = p,
β is a p × 1 vector of unknown regression coefficients, and ϵ is an n × 1 vector of
random disturbances following a multivariate normal distribution Nn(0, σ

2In), where
In denotes the identity matrix of dimension n. In presence of collinearity, the least
squares (LS) estimator β̂ = (X⊤X)−1X⊤Y becomes unstable (see for instance Stew-
art, 1987; Belsley, 1991) and several alternatives have been proposed in the literature
to reduce its harmful effects. A useful procedure to combat collinearity is the ridge
estimator (Hoerl and Kennard, 1970) which is defined as

β̂λ = (X⊤X + λIp)
−1X⊤Y , λ > 0, (2)

where λ is the shrinkage parameter, also known as ridge parameter. For the appropriate
selection of λ, Golub et al. (1979) suggested the generalized cross-validation (GCV)
criterion, which consists in the minimization of the objective function

GCV(λ) =
1

n

∑n
i=1(Yi − x⊤

i β̂λ)
2

{tr(In −H(λ))/n}2
=

∥(In −H(λ))Y ∥2/n
{tr(In −H(λ))/n}2

,

where H(λ) = X(X⊤X + λIp)
−1X⊤ is called prediction matrix, and Ŷi(λ) = x⊤

i β̂λ

denotes the ith predicted value, for i = 1, . . . , n. It is straightforward to note that
the vector of predicted values Ŷ λ = (Ŷ1(λ), . . . , Ŷn(λ))

⊤ assumes the form Ŷ λ =
H(λ)Y . Several techniques exist in literature to estimate the shrinkage parameter λ.
For examples, see Hoerl et al. (1975); Kibria (2022), among others.
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2.1 Influence diagnostics

The pioneering work of Cook (1977) has led to the development of measures for
influence diagnostics in various extensions of the linear regression model. The tech-
nique relies on identifying influential observations by studying their effect on some key
aspects of the model once such observations are removed from the dataset. In fact,
based on the empirical influence curve, Cook and Weisberg (1980) introduced a family

of measures of influence in regression models. The Cook’s distance for β̂ is defined as

Di(M , c) =
(SICi)

⊤M(SICi)

c
,

where SICi = (n − 1)(β̂ − β̂(i)), with β̂(i) denoting the least squares estimator of β
after the ith case is deleted, M is a p × p positive semidefinite matrix, and c > 0 is
a scalar. For ridge regression, Walker and Birch (1988) proposed two versions for the
Cook distance,

Di(M , c) =
(β̂λ − β̂λ(i))

⊤M(β̂λ − β̂λ(i))

c
,

say D∗
i and D∗∗

i using, M = X⊤X, M = (X⊤X + λI)(X⊤X)−1(X⊤X + λI), and

c = ps2, respectively, where s2 = ∥Y −Xβ̂∥2/(n− p).
Within the likelihood framework, Cook (1986) proposed to assess the influence

of extreme observations on the maximum likelihood estimates by considering the
curvature of the likelihood displacement,

LD(ω) = 2{ℓ(θ̂)− ℓ(θ̂(ω))},

where θ̂ and θ̂(ω) denote the maximum likelihood estimates based on the postulated
and perturbated models, which are defined as P = {g(x;θ) : θ ∈ Θ} and,

Pω = {g(x;θ,ω) : θ ∈ Θ,ω ∈ Ω},

respectively, with ω being a q-dimensional perturbation vector that is restricted to
some open subset Ω ⊂ Rq. In addition, it is assumed that there is a null perturbation,
ω0, satisfying Pω0 = P. In general, we may be interested in assessing the influence
on objective functions other than the likelihood displacement, for additional details
see Wu and Luo (1993). Let f(ω) be a measure of influence. Thus, the main aim of
the local influence approach is to analyze the curvature of the curves passing through
the influence surface φ(ω) = (ω⊤, f(ω))⊤ at the critical point ω0. The idea is to find
the direction associated to the largest normal curvature. This direction may evidence
those observations that have considerable influence on the objective function under
small perturbations on the postulated model and/or the data.

Consider ω = ω0 + εh, where h is a unitary direction (∥h∥ = 1) and ε ∈ R. As
discussed in Cook (1986) the local behavior of the influence function f(ω) around
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ε = 0 for a direction h can be characterized by the normal curvature,

Cf,h =
h⊤F fh

(1 +∇⊤
f ∇f )h

⊤(I +∇f∇⊤
f )h

, (3)

where ∇f = ∂f(ω)/∂ω
∣∣
ω=ω0

and F f = ∂2f(ω)/∂ω∂ω⊤
∣∣
ω=ω0

. It is well known that

Cf,h is not invariant under uniform changes in scale (see Fung and Kwan, 1997).
Thus, Poon and Poon (1999) proposed the conformal normal curvature, which is a
scale-invariant influence measure and is given by

Bf,h =
h⊤F fh

∥F f∥Mh⊤(I +∇f∇⊤
f )h

, (4)

where ∥ · ∥M denotes some matrix norm such as ∥F f∥M = (tr(F⊤
f F f ))

1/2. An inter-
esting property of the conformal curvature is that 0 ≤ |Bf,h| ≤ 1. According to matrix
theory, the local maximum curvature and the corresponding directions are associated
with the generalized eigenvalue-eigenvector solution of the equation

∥F f − λKf∥ = 0, (5)

where Kf is defined as (1+∇⊤
f ∇f )(I+∇f∇⊤

f ) or ∥F f∥M (I+∇f∇⊤
f ) for the normal

or conformal curvature, respectively. The direction of maximum curvature hmax is
determinated by the eigenvector associated with the largest eigenvalue associated with
the solution of (5). Such direction is used to identify which observations are locally
influential. It should be noted that, important simplifications in the computation of
the curvature matrices described above occur when ∇f = 0. This holds, for example,
when the influence function f(ω) is the likelihood displacement LD(ω).

An alternative approach to perform the local influence diagnostics was proposed by
Shi (1997) who generalized the local influence defined in Cook (1986) by considering
the generalized influence function

GIF(T ,h) = lim
ε→0

T (ω0 + εh)− T (ω0)

ε
,

where T ∈ Rp represents some statistic of interest. To determine the effect of a small
perturbation on T , Shi (1997) suggested using the generalized Cook distance, defined
as

GDT,h =
{GIF(T ,h)}⊤M{GIF(T ,h)}

c
,

where M is a p × p positive semidefinite matrix, and c > 0 is a scalar. As with
the curvatures in (3) or (4) that direction related to the largest local change in T
can be used as a diagnostic tool. This approach has been applied by Shi and Wang
(1999) to assess the local influence in ridge regression using the ridge estimator as
the statistic of interest. The main motivation for its study comes from the fact that
this technique allows studying the sensitivity of several aspects of the model under
different perturbation schemes.
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3 Kullback-Leibler based influence measures

Consider that T 1 and T 2 are two estimators of β. We can measure the discrepancy
between T 1 and T 2 using the Kullback-Leibler divergence between their associated
density functions. Indeed, let g1 and g2 be the densities of T 1 and T 2, respectively.
Then, the Kullback-Leibler divergence (also known as relative entropy) between T 1

and T 2 is given by

I(T 1 : T 2) =

∫
log
(g1(u)
g2(u)

)
d g1(u).

Note that I(T 1 : T 2) is well defined if the support of T 1 is contained in the support
of T 2. Moreover I(T 1,T 2) ≥ 0 with equality if and only if g1 = g2 almost everywhere.
In general I(T 1 : T 2) is not symmetric, therefore is not a distance function but a
directed divergence or pseudo-distance measure. In Jeffreys (1946) was introduced a
divergence function that avoids the asymmetry problem, although it does not satisfy
the triangular inequality. Hence, also corresponds to a pseudo-distance. Suppose now
that T 1 ∼ Np(µ1,Σ1) and T 2 ∼ Np(µ2,Σ2). Then it is easy to notice that (see for
instance Ullah, 1996),

I(T 1 : T 2) =
1

2
(µ1 − µ2)

⊤Σ−1
2 (µ1 − µ2) +

1

2
(trΣ1Σ

−1
2 − p)− 1

2
log

|Σ1|
|Σ2|

. (6)

Following some ideas in Pan et al. (1996, 1999) and Pan and Fung (2000), we develop
diagnostic procedures based on case elimination techniques as well as local influence
considering the function in (6) as a measure of influence.

3.1 Case-deletion procedure

Consider the model given in (1), under the assumption of normality it follows that

the least squares estimator has distribution β̂ ∼ Np(β, σ
2(X⊤X)−1). Based on the

relationship between the ridge estimator with the LS estimator, we have

β̂λ = S−1
λ X⊤Xβ̂ ∼ Np(S

−1
λ X⊤Xβ, σ2S−1

λ X⊤XS−1
λ ),

where Sλ = X⊤X + λIp. Following Wei and Shih (1994), we can assess the influence
of the ith observation, using the case-deletion model which is defined as:

Y (i) = X(i)β + ϵ(i), ϵ(i) ∼ Nn−1(0, σ
2In−1), (7)

where Y (i), X(i) and ϵ(i) denote respectively, the response vector, model matrix and
the vector of random disturbances in the model given in (1) once the ith observation
has been removed. It is straightforward to notice that the ridge estimator for model
(7), that is, without considering the ith observation, say β̂λ(i), satisfies

β̂λ(i) = (X⊤
(i)X(i) + λIp)

−1X⊤
(i)Y (i)

∼ Np(S
−1
λ (i)X⊤

(i)X(i)β, σ
2S−1

λ (i)X⊤
(i)X(i)S

−1
λ (i)),
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with Sλ(i) = X⊤
(i)X(i) + λIp. Evidently, X

⊤
(i)X(i) = X⊤X − xix

⊤
i , which leads to

write
Sλ(i) = X⊤X + λIp − xix

⊤
i = Sλ − xix

⊤
i .

As an alternative to the techniques for case-deletion diagnostics in ridge regression out-
lined in Section 2.1, we will consider the Kullback-Leibler divergence between β̂λ and

β̂λ(i). This allows us to define a measure to assess the influence of the ith observation
on the ridge estimator, as:

KLi = I(β̂λ : β̂λ(i)) =
1

2
δ⊤ Cov−1(β̂λ(i))δ +

1

2
trCov(β̂λ) Cov

−1(β̂λ(i))

− 1

2
log

|Cov(β̂λ)|
|Cov(β̂λ(i))|

− p

2
, (8)

where δ = E(β̂λ)−E(β̂λ(i)). The next proposition gives a computationally attractive
expression for KLi.

Proposition 1. Let X = UDV ⊤ be the singular value decomposition (SVD) of the
model matrix X with U ∈ Rn×p such that U⊤U = Ip, D = diag(d1, . . . , dp), where
d1 ≥ · · · ≥ dp > 0, are the singular values of X, and V is an orthogonal matrix. Then

KLi =
1

2

(λ2q2i (α)

σ2
+ 1 + u⊤

i ∆
2ui

)( hii

1− hii

)
+

hii(λ)

1− hii
+

1

2
log
( 1− hii

(1− hii(λ))2

)
,

for i = 1, . . . , n, where qi(α) = u⊤
i D

−1∆α, ∆ = (D2 + λI)−1D2, α = V ⊤β and
ui denotes the ith row of the matrix U . Moreover, the diagonal elements of H =
X(X⊤X)−1X⊤ and H(λ), can be written as

hii = u⊤
i ui, hii(λ) = u⊤

i ∆ui.

Proof. See Appendix A of the supplementary material.

Remark 1. Because KLi depends on θ = (β⊤, σ2)⊤. We must obtain a sample ver-
sion of KLi by considering estimates for β and σ2. Among the different alternatives to
characterize the ridge estimator, we will consider that (2) can be seen as the penalized
maximum likelihood (PML) estimator based on the penalized log-likelihood function,
defined as,

ℓλ(β, σ
2) = ℓ(β, σ2)− λ

2σ2
∥β∥2

= −n

2
log 2πσ2 − 1

2σ2

(
∥Y −Xβ∥2 + λ∥β∥2

)
,

where ℓ(β, σ2) denote the log-likelihood function based on the model in (1). It should

be noted that the PML estimator of θ = (β⊤, σ2)⊤ is given by θ̂λ = (β̂⊤
λ , σ̂

2
λ)

⊤ with

7



β̂λ being defined in (2), whereas

σ̂2
λ =

1

n

(
∥Y −Xβ̂λ∥2 + λ∥β̂λ∥2

)
.

Remark 2. As highlighted in Pan and Fung (2000), using the Kullback-Leibler diver-
gence is one approach to measure the difference between the densities associated with
β̂λ and β̂λ(i). Indeed, KL∗

i = I(β̂λ(i) : β̂λ) can be calculated in much the same fash-
ion as KLi. In addition, this allows to obtain other measures useful for diagnostic
purposes, such as Jeffreys’ divergence, given by

Ji = I(β̂λ : β̂λ(i)) + I(β̂λ(i) : β̂λ).

However, this work is focused on performing case-deletion diagnostics in ridge
regression based on the use of (8).

3.2 Local influence procedure

In the following, we consider three perturbation schemes. Namely, the variance pertur-
bation on model defined in Equation (1), the response perturbation scheme, and the
explanatory variable perturbation. Each scheme was applied on the Kullback-Leibler
divergence as an influence function. The proofs of Propositions 2-4 are deferred to
Appendix B of the supplementary material.

3.2.1 Perturbation of variances

Let us consider the perturbed model,

Pω = {Nn(Xβ, σ2W−1) : β ∈ Rp, σ2 > 0,W = diag(ω),

with ω = (ω1, . . . , ωn)
⊤,ω ∈ Rn

+}. (9)

In this case we have that the null perturbation vector is given by ω0 = 1n. It is easy
to notice that the ridge estimator under the perturbed model takes the form,

β̂λ(ω) = (X⊤WX + λIp)
−1X⊤WY ,

hence,
β̂λ(ω) ∼ Np(S

−1
λ (ω)X⊤WXβ,S−1

λ (ω)X⊤WXS−1
λ (ω)),

with Sλ(ω) = X⊤WX + λIp. Furthermore, we have that β̂λ(ω0) = β̂λ. That is, we
propose to use the following influence function

KL(ω) = I(β̂λ : β̂λ(ω))

=
1

2
δ⊤(ω) Cov−1(β̂λ(ω))δ(ω) +

1

2
trCov(β̂λ) Cov

−1(β̂λ(ω))

− 1

2
log

|Cov(β̂λ)|
|Cov(β̂λ(ω))|

− p

2
.
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where δ(ω) = (Mλ − Mλ(ω))β, with Mλ = S−1
λ X⊤X and Mλ(ω) =

S−1
λ (ω)X⊤WX. Thus, we can write KL(ω) as:

KL(ω) =
1

2σ2
δ⊤(ω)Sλ(ω)(X⊤WX)−1Sλ(ω)δ(ω)− p

2

+
1

2
trXS−1

λ Sλ(ω)(X⊤WX)−1Sλ(ω)S−1
λ X⊤

+ log |Sλ| −
1

2
log |X⊤X| − log |Sλ(ω)|+ 1

2
log |X⊤WX|.

The following proposition characterizes the local curvature considering the perturbed
model Pω defined in Equation (9).

Proposition 2. For the perturbed model given in (9), we have that the gradient and

Hessian matrix of KL(ω) evaluated at ω = ω0 and (β⊤, σ2)⊤ = (β̂⊤
λ , σ̂

2
λ)

⊤, adopt the
form

∇KL =
∂KL(ω)

∂ω

∣∣∣
ω=ω0,θ=θ̂λ

= 0,

FKL =
∂2KL(ω)

∂ω∂ω⊤

∣∣∣
ω=ω0,θ=θ̂λ

= B⊤
n

{
H(λ)⊗H(λ)− 1

σ̂2
λ

H ⊗H(λ)CH(λ)

+
1

2
H ⊗ (H − 4H(λ) +H2(λ))

}
Bn,

where ⊗ denotes the Kronecker product, C = Y Y ⊤+ Ŷ λŶ
⊤
λ and Bn is known as the

transition matrix (see Nel, 1980) which satisfies vecW = Bnω.

3.2.2 Response perturbation

Let Y (ω) = Y + ω be response shifts, where ω = (ω1, . . . , ωn)
⊤ and the null pertur-

bation vector is given by ω0 = 0. Thus, the perturbed version of the ridge estimator,
satisfies

β̂λ(ω) = (X⊤X + λI)−1X⊤Y (ω) = β̂λ + (X⊤X + λI)−1X⊤ω.

It is straightforward to verify that Cov(β̂λ(ω)) = Cov(β̂λ), which allows us to write

KL(ω) = I(β̂λ : β̂λ(ω))

=
1

2
ω⊤X(X⊤X + λI)−1 Cov−1(β̂λ)(X

⊤X + λI)−1X⊤ω

=
1

2
ω⊤X(X⊤X)−1X⊤ω.

Explicit formulas for ∇KL and FKL required to evaluate the local curvature are
provided in the following proposition.
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Proposition 3. For the response perturbation Y (ω) = Y +ω, we have that the gra-

dient and Hessian matrix of KL(ω) evaluated at ω = ω0 and (β⊤, σ2)⊤ = (β̂⊤
λ , σ̂

2
λ)

⊤,
are given by

∇KL =
∂KL(ω)

∂ω

∣∣∣
ω=ω0,θ=θ̂λ

= 0,

FKL =
∂2KL(ω)

∂ω∂ω⊤

∣∣∣
ω=ω0,θ=θ̂λ

= H,

where H = X(X⊤X)−1X⊤.

It is interesting to note that the curvature matrix associated with this perturbation
scheme is fully characterized by the projection matrix H. That is, from this perspec-
tive, the leverage matrix associated with least squares estimation may still contain
information relevant for diagnostics in ridge regression. It is well known that a projec-
tion matrix has all its non-zero eigenvalues equal to unity. In fact, the singular value
decomposition of the matrix X used in Proposition 1 allows to write H = UU⊤,
which leads to a very efficient procedure to obtain these p eigenvectors. From a diag-
nostic perspective, our interest is in examining the magnitude of the elements of the
U matrix to reveal those observations that have a strong impact when the response
perturbation scheme is considered.

3.2.3 Perturbation of the explanatory variables

Our interest is on perturbing a particular continuous explanatory variable. Thus, we
assume the following perturbed model

Pω = {Nn(X(ω)β, σ2I) : β ∈ Rp, σ2 > 0,ω = (ω1, . . . , ωn)
⊤ ∈ Rn}, (10)

where X(ω) = X+aωc⊤t denotes the perturbed model matrix, a > 0 is a scale factor
and ct is a p× 1 vector with 1 at the tth position and zero elsewhere. In this case one
has ω0 = 0. Under this perturbation scheme we have that

β̂λ(ω) = (X⊤(ω)X(ω) + λI)−1X⊤(ω)Y .

Under the assumption of Y ∼ Nn(Xβ, σ2In), it follows that

β̂λ(ω) ∼ Np(S
−1
λ (ω)X⊤(ω)Xβ, σ2S−1

λ (ω)X⊤(ω)X(ω)S−1
λ (ω)).

Under this perturbation scheme the influence functionKL(ω) = I(β̂λ : β̂λ(ω)) adopts
the form,

KL(ω) =
1

2σ2
δ⊤(ω)Sλ(ω)(X⊤(ω)X(ω))−1Sλ(ω)δ(ω)− p

2

+
1

2
trXS−1

λ Sλ(ω)(X⊤(ω)X(ω))−1Sλ(ω)S−1
λ X⊤
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+ log |Sλ| −
1

2
log |X⊤X| − log |Sλ(ω)|+ 1

2
log |X⊤(ω)X(ω)|.

Therefore, the elements necessary to characterize the local curvature associated with
the perturbed model in (10) are given in the following proposition.

Proposition 4. Considering the perturbed model defined in Equation (10), we have

that ∇KL and FKL evaluated at ω = ω0 and (β⊤, σ2)⊤ = (β̂⊤
λ , σ̂

2
λ)

⊤, are given by

∇KL =
∂KL(ω)

∂ω

∣∣∣
ω=ω0,θ=θ̂λ

= 0,

FKL =
∂2KL(ω)

∂ω∂ω⊤

∣∣∣
ω=ω0,θ=θ̂λ

=
a2

σ̂2
λ

{
rttŶ λŶ

⊤
λ − 2(rttH(λ) +X(X⊤X)−1EtS

−1
λ X⊤)Ŷ λŶ

⊤
λ (In − 1

2H(λ))
}

+ a2
{
(ltt +m2

t/σ̂
2
λ + r2tt)H − 2rttH(λ)(In − 1

2H(λ)) + 2XS−1
λ EtS

−1
λ X⊤

+X(X⊤X)−1Et

[
(X⊤X)−1X⊤ − 4S−1

λ X⊤(In − 1
2H(λ))

]}
,

where R = (X⊤X)−1, L = S−1
λ X⊤XS−1

λ , m = S−1
λ X⊤Ŷ λ. Thus, rtt = c⊤t Rct

and ltt = c⊤t Lct, mt = c⊤t m, and Et = ctc
⊤
t .

It is interesting to note that the first derivative of KL(ω) for all the perturbation
schemes under consideration satisfies ∇KL = 0, which simplifies the computation of
the curvature matrix associated with (4). This result is expected, because KL(ω)
attains its local minimum at ω0.

4 Numerical experiments

In this section we illustrate the proposed methodology through the analysis of two real
datasets previously studied in literature. In addition, we present a simulation study to
evaluate the performance of the influence diagnostics based on the Kullback-Leibler
divergence. Datasets and R codes for the influence diagnostic procedures described
in the previous section are available on github.1 In our analyses we also have used
routines available in the india (Osorio, 2023) and fastmatrix (Osorio and Ogueda, 2024)
packages.

4.1 Monte Carlo study

We report our findings from a Monte Carlo simulation study, which was designed
to evaluate the performance of the influence diagnostic procedure described in the
previous section on small samples. Our experiment is based on the simulation study
reported by Hadi and Nyquist (1993) who proposed the construction of a model matrix
n× p

X =

(
X(i)

x⊤
i

)
, (11)

1URL: https://github.com/faosorios/KL influence
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Table 1 Outlier detection percentage using different influence measures, n = 20.

k Scenario d case deletion LD(ω) KL(ω)

D∗∗
i KLi variance response variance response

1 I 1 7.3 2.4 3.6 2.8 2.7 91.7
5 53.1 100.0 0.0 0.0 21.2 100.0

10 73.9 100.0 0.0 0.2 25.7 100.0
II 1 17.0 59.6 3.0 1.4 4.0 100.0

5 62.9 100.0 0.0 0.0 5.8 100.0
10 82.5 100.0 0.0 0.0 3.6 100.0

III 1 13.4 16.3 3.4 3.2 5.0 100.0
5 60.7 100.0 0.0 0.8 29.8 100.0

10 79.5 100.0 0.0 0.6 35.1 100.0

2 I 1 19.4 98.7 0.7 0.3 10.4 100.0
5 56.1 100.0 0.0 0.0 20.8 100.0

10 78.2 100.0 0.0 0.0 24.2 100.0
II 1 28.3 100.0 0.3 0.0 10.6 100.0

5 71.4 100.0 0.0 0.0 4.8 100.0
10 82.8 100.0 0.0 0.0 1.1 100.0

III 1 26.2 99.9 0.6 0.2 11.2 100.0
5 68.3 100.0 0.0 0.0 29.2 100.0

10 87.1 100.0 0.0 0.1 30.0 100.0

3 I 1 22.5 100.0 0.0 0.0 10.7 100.0
5 50.8 100.0 0.0 0.0 24.6 100.0

10 75.1 100.0 0.0 0.1 30.4 100.0
II 1 28.2 100.0 0.0 0.0 13.2 100.0

5 68.8 100.0 0.0 0.0 6.3 100.0
10 84.8 100.0 0.0 0.0 2.3 100.0

III 1 30.7 100.0 0.0 0.0 12.9 100.0
5 65.4 100.0 0.0 0.0 32.6 100.0

10 88.1 100.0 0.0 0.3 38.3 100.0

according to the following procedure: First, we need to create the matrix Z =
(Z1,Z2,Z3), where Zj ∼ Nm(0, Im) are independent vectors, for j = 1, 2, 3, with
m = n− 1, and then consider

W 1 = Za+ η1, W 2 = Zb+ η2,

where a y b are vectors of constants p × 1, whereas η1 ∼ Nm(0, σ2(k)Im) and η2 ∼
Nm(0, σ2(k)Im) such that η1 and η2 are independent, with σ2(k) = 10−k. Let,

X(i) = (Z1,Z2,Z3,W 1,W 2), (12)

and obtain the eigenvectors Ψ of X⊤
(i)X(i). The next step is the construction of the

vector:
xi = dΨτ ,

where d is a scalar and τ is a unitary vector p× 1. Finally, the vector x⊤
i is appended

to X(i) as the last row of the matrix in (11). As mentioned by Hadi and Nyquist
(1993), the conditioning of the matrix X(i) defined in (12) is characterized by the
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Table 2 Outlier detection percentage using different influence measures, n = 50.

k Scenario d case deletion LD(ω) KL(ω)

D∗∗
i KLi variance response variance response

1 I 1 4.8 0.1 3.8 3.8 2.8 97.5
5 56.7 100.0 1.0 0.0 48.3 100.0

10 74.9 100.0 0.0 0.0 59.2 100.0
II 1 18.1 57.4 3.7 2.5 9.4 100.0

5 68.6 100.0 0.0 0.0 27.6 100.0
10 84.4 100.0 0.0 0.0 31.3 100.0

III 1 10.8 6.4 3.5 3.7 8.5 100.0
5 63.9 100.0 0.5 0.1 65.0 100.0

10 82.3 100.0 0.0 0.0 81.8 100.0

2 I 1 29.8 99.6 1.5 1.2 18.2 100.0
5 64.1 100.0 0.0 0.0 47.3 100.0

10 80.8 100.0 0.0 0.0 50.1 100.0
II 1 38.5 100.0 0.9 0.2 18.1 100.0

5 77.0 100.0 0.0 0.0 24.0 100.0
10 87.3 100.0 0.0 0.0 23.3 100.0

III 1 32.6 100.0 1.2 0.8 23.1 100.0
5 77.7 100.0 0.0 0.0 58.9 100.0

10 92.5 100.0 0.0 0.0 71.3 100.0

3 I 1 37.8 100.0 0.0 0.0 20.9 100.0
5 66.2 100.0 0.0 0.0 49.9 100.0

10 86.4 100.0 0.0 0.0 52.7 100.0
II 1 40.6 100.0 0.0 0.0 18.5 100.0

5 80.1 100.0 0.0 0.0 24.6 100.0
10 93.1 100.0 0.0 0.0 23.9 100.0

III 1 40.5 100.0 0.0 0.0 23.8 100.0
5 82.4 100.0 0.0 0.0 60.7 100.0

10 96.8 100.0 0.0 0.0 67.8 100.0

scalar k and the vectors a and b. In fact, for k = 0 and a = b = (0, 0, 0)⊤ the matrix
X(i) is well-conditioned. Additionally, the parameter d determines the leverage of xi,
and as d increases it becomes more collinearity-influential, whereas τ determines the
position of xi relative to the eigenvectors Ψ (see Hadi and Nyquist, 1993).

Next, we consider the model,

Y = Xβ + ϵ, (13)

where the model matrix has been generated from the procedure described above. We
use β = (1, 1, 1, 1, 1)⊤ and ϵ ∼ Nn(0, ϕIn) with ϕ = 1. Following Hadi and Nyquist
(1993), we consider a = (1, 1, 0)⊤ and b = (0, 0, 1)⊤ to create two sets of collinearities
and the scenarios:

I) τ =
1√
5
(1, 1, 1, 1, 1)⊤, II) τ =

1√
2
(0, 0, 0, 1, 1)⊤, III) τ =

1√
2
(1, 0, 0, 0, 1)⊤.
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Table 3 Outlier detection percentage using different influence measures, n = 100.

k Scenario d case deletion LD(ω) KL(ω)

D∗∗
i KLi variance response variance response

1 I 1 3.8 0.0 3.7 3.8 4.0 99.8
5 60.6 100.0 3.4 0.3 65.8 100.0

10 77.1 100.0 0.0 0.0 75.6 100.0
II 1 15.7 74.6 4.6 3.2 18.0 100.0

5 72.0 100.0 0.2 0.0 54.4 100.0
10 85.3 100.0 0.0 0.0 67.7 100.0

III 1 8.4 2.4 5.3 5.1 14.5 100.0
5 67.0 100.0 2.2 0.1 91.0 100.0

10 83.8 100.0 0.0 0.0 97.0 100.0

2 I 1 34.5 99.9 3.0 2.3 27.8 100.0
5 73.6 100.0 0.0 0.0 62.4 100.0

10 84.6 100.0 0.0 0.0 69.0 100.0
II 1 42.4 100.0 2.6 0.7 31.4 100.0

5 80.5 100.0 0.0 0.0 48.7 100.0
10 91.6 100.0 0.0 0.0 55.0 100.0

III 1 37.6 100.0 3.1 2.0 34.5 100.0
5 80.9 100.0 0.0 0.0 84.3 100.0

10 92.8 100.0 0.0 0.0 88.3 100.0

3 I 1 47.2 100.0 0.2 0.0 30.7 100.0
5 77.0 100.0 0.0 0.0 58.7 100.0

10 90.4 100.0 0.0 0.0 58.4 100.0
II 1 52.7 100.0 0.0 0.0 24.9 100.0

5 87.8 100.0 0.0 0.0 46.0 100.0
10 95.8 100.0 0.0 0.0 52.6 100.0

III 1 49.3 100.0 0.0 0.0 37.4 100.0
5 88.4 100.0 0.0 0.0 72.7 100.0

10 98.3 100.0 0.0 0.0 75.0 100.0

In our simulation study we will also consider the following values for d and k, d =
1, 5, 10 and k = 1, 2, 3, respectively. 1 000 datasets with sample size of n = 20, 50 and
100 were created from model (13).

Note that the synthetic collinearity-influential point corresponds to the last obser-
vation in the matrix defined in (11). Let h = |hmax|, thus we detect this extreme point
if hn is greater than the following threshold h + 2 sd(h), where h and sd(h) are the
average and standard deviation of h, respectively. We emphasize that this benchmark
will be used in our analysis with real datasets from the following section. Tables 1,
2 and 3 contain the collinearity-influential detection percentages computed using this
threshold for different values of k and d considering several influence measures.

As expected, the detection percentages improve as d increases. Our findings sug-
gest that, methods based on the case elimination technique using the Kullback-Leibler
divergence as well as local influence under the response perturbation scheme are quite
efficient for detecting of the collinearity-influential observation. We should stress that
the results based on the evaluation of local influence based on the likelihood displace-
ment, LD(ω) (see Appendix A), are disappointing, whereas the Cook’s distance, D∗∗

i ,
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and the local influence procedure under the scheme of perturbation of variances are
more conservative in detecting the extreme observation.

4.2 Real-life examples

4.2.1 Portland cement data

We will consider the experimental study on heat emission during the hardening process
of 13 Portland cement samples introduced by Woods et al. (1932) who related the
heat emission after 180 days of curing, measured in calories per gram of cement as
a function of four predictors corresponding to the percentages of the following four
compounds: tricalcium aluminate, tricalcium silicate, tetracalcium aluminate ferrite
and dicalcium silicate. This dataset has been extensively analyzed to illustrate the
harmful effects of collinearity (see, for example, Kowalski, 1990; Kaçıranlar et al.,
1999; Lukman et al., 2019, as well as the references therein). In particular, Hadi (1988)
and Wang and Nyquist (1991) used this dataset for the detection of collinearity-
influential observations in the model given in (1). Following Gorman and Toman (1966)
we considered a linear regression model with intercept, that is,

Yi = β0 + β1xi1 + β2xi2 + β3xi3 + β4xi4 + ϵi, (14)

for i = 1, . . . , 13. This model is called an inhomogeneous linear model by Kaçıranlar et
al. (1999), and whose design matrixX has scaled condition number (see Belsley, 1991),
κ(X) = 249.578 suggesting the presence of rather severe collinearity. We consider ridge
estimation, choosing the shrinkage parameter by generalized cross-validation. Table 4
presents the estimation results for the model given in (14). We also report the selected
ridge parameter, as well as the effective degrees of freedom, edf = trH(λ), and the

determinant of the estimated covariance matrix for β̂λ.
Figure 1 displays several diagnostic measures. Specifically, the Cook’s distance, the

penalized likelihood displacement Cook et al. (1988), given by (see Appendix D of the
supplementary material):

LDi(β|σ2) = 2{ℓλ(β̂λ, σ̂
2
λ)−max

σ2
ℓλ(β̂λ(i), σ

2)}

= n log
(∥Y −Xβ̂λ(i)∥2 + λ∥β̂λ(i)∥2

∥Y −Xβ̂λ∥2 + λ∥β̂λ∥2
)
,

and the direction of largest curvature hmax associated with the variance perturbation
scheme (see Figure 1 (e)), using the penalized likelihood displacement,

LD(ω) = 2{ℓλ(β̂λ, σ̂
2
λ)− ℓλ(β̂λ(ω), σ̂2

λ(ω))},

reveal that observation 8 has a strong impact on the estimation of the regression coef-
ficients (for details on the derivation of the curvature matrix in this case see Appendix
A), whereas the index plot of hmax for LD(ω) under the response perturbation allows
us to identify observation 6. In addition, observation 10 has a pronounced leverage
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Fig. 1 Influence measures for Portland cement data: (a) Cook’s distances, D∗∗
i , (b) penalized likeli-

hood displacement, LDi(β|σ2), (c) index plot of leverages, hii(λ), (d) index plot of relative condition
index. Index plot of hmax based on LD(ω) under (e) perturbation of variances, (f) and response per-
turbation.
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Table 4 Parameter estimates, standard errors (in parenthesis) and
percentage change in parameter estimates for Portland cement data.

Parameter Full Removed observations

data 3 6 8 10

β0 0.085 0.084 0.089 0.084 0.089
(0.040) (0.026) (0.045) (0.051) (0.042)

— -1.88% 3.88% -1.72% 3.98%
β1 2.165 2.164 2.133 2.247 2.135

(0.170) (0.179) (0.145) (0.144) (0.279)
— -0.08% -1.52% 3.76% -1.42%

β2 1.159 1.160 1.154 1.119 1.164
(0.044) (0.047) (0.037) (0.040) (0.058)

— 0.09% -0.41% -3.38% 0.44%
β3 0.738 0.736 0.738 0.903 0.726

(0.146) (0.154) (0.124) (0.138) (0.176)
— -0.35% -0.07% 22.31% -1.68%

β4 0.490 0.490 0.493 0.482 0.492
(0.038) (0.040) (0.032) (0.032) (0.044)

— 0.06% 0.78% -1.50% 0.56%
σ2 5.090 5.634 3.600 3.477 5.446

— 10.69% -29.28% -31.69% 6.98%
λ 1.972 2.188 1.457 1.255 1.867

— 10.99% -26.11% -36.36% -5.29%
edf 3.979 3.977 3.985 3.985 3.960

— -0.07% 0.14% 0.15% -0.49%
1det(Cov(β̂λ)) 4.504 3.332 1.654 2.587 19.630

— -26.01% -63.28% -42.56% 335.88%

1 values multiplied by 1014.
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Fig. 2 Influence measures for Portland cement data: (a) selected ridge parameter using GCV when
the ith observation is deleted, Index plot of hmax based on GCV(λ,ω) under (b) perturbation of
variances, and (c) response perturbation.

(see Figure 1 (c), the benchmark in this case is 2 ·edf/n which corresponds to twice
the average of the hii(λ)’s), whereas using the relative condition index (Hadi, 1988)
γi = (κ(i) − κ)/κ, for i = 1, . . . , n, where κ = κ(X) and κ(i) = κ(X(i)), identifies the
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3rd case as an observation that exerts a strong effect on the conditioning of the design
matrix, i.e., eliminating observation 3 increases its condition number.

Furthermore, Figure 2 shows that observations 6 and 8 also have some effect on
the selection of the ridge parameter. The panel in (a) presents the λ estimates based
on the GCV criterion when the ith observation was removed from the dataset, in
this case the segmented line represents the selected ridge parameter considering the
full data, which is reported in Table 4. Following Thomas (1991) (see also Osorio,
2016) by perturbing the generalized cross-validation criterion, we can evaluate those
observations that have a strong influence on the selection of the ridge parameter. It
is possible to show that the direction of greatest local change on GCV is given by
hmax ∝ ∂λ̂(ω)/∂ω

∣∣
ω=ω0

. Furthermore,

∂λ̂(ω)

∂ω

∣∣∣
ω=ω0

=
{
−
(∂2 GCV(λ,ω)

∂λ2

)−1 ∂2 GCV(λ,ω)

∂ω∂λ

}∣∣∣
ω=ω0

,

that is, hmax ∝ ∂2 GCV(λ,ω)/∂ω∂λ
∣∣
ω=ω0,λ=λ̂

. For the perturbation scheme defined

in Section 3.2.1, we have that the perturbed GCV criterion adopts the form,

GCV(λ,ω) =
∥(In −H(λ,ω))Y ∥2/n
{tr(In −H(λ,ω))/n}2

,

where H(λ,ω) = X(X⊤WX+λIp)
−1X⊤W , with W = diag(ω1, . . . , ωn) and ω0 =

1n. Under the response perturbation scheme Y (ω) = Y +ω, where ω = (ω1, . . . , ωn)
with ω0 = 0, the perturbed GCV criterion is given by

GCV(λ,ω) =
∥(In −H(λ))Y (ω)∥2/n
{tr(In −H(λ))/n}2

.

Closed-form expressions for hmax follow directly from Thomas (1991) (see also the
discussion in Osorio, 2016). In our case, we can see from Figure 2 (b,d) that observa-
tions 6 and 8 have a strong influence on the choice of λ. Moreover, from Table 4, we
note that the elimination of these observations exert a 26.1% and 36.4% decrease in
the selection of this parameter, respectively.

Using case-deletion and local influence methods based on Kullback-Leibler diver-
gence (see Figure 3 and Figure 4, respectively), allow the identification of observation
10 as strongly influential. Indeed, this observation not only has a high leverage, but,
as can be seen from Table 4, it also has a strong impact on the covariance of the ridge
estimator. It is interesting to note that KLi or the influence function, KL(ω) for the
perturbation of variances are monotonic functions of the ratio of the determinants of
the covariance matrices between the estimators β̂λ and β̂λ(i) or β̂λ(ω), respectively.
That is, the measures proposed in our work are related to the COVRATIO statistic
given in Belsley et al. (1980). It should be stressed that no discrepant observations
were detected by perturbing each of the explanatory variables. Additionally, the index
plot of the magnitude of the eigenvectors U associated with the response perturbation
highlights observation 3 which has been identified as a collinearity-influential point
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Fig. 3 Index plot of KLi for Portland cement data.
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Fig. 4 Index plot of hmax based on KL(ω) under (a) perturbation of variances, and (b) response
perturbation, Portland cement data.

(see, for instance Hadi, 1988). It should be noted that in this case we have calculated
the threshold described in Section 4.1 for each of the columns of U . In Figure 4 (b), we
have plotted only those thresholds that allowed us to identify influential observations.
Finally, it should be noted that, to the best of our knowledge, observation 10 had not
previously been detected as influential using traditional diagnostic techniques.

4.2.2 Aerial biomass

In Meloun and Militký (2001), the dataset introduced by Linthurst (1979) was con-
sidered to exemplify the use of various diagnostic techniques in linear regression. The
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main aim of the study was to characterize those variables that influence the aerial
biomass production of the marsh grass Spartina alterniflora using 45 soil samples from
5 random sites. In this work we consider the model analyzed in Meloun and Militký
(2001), who assumed that the response variable, Y biomass aerial (g/m2), is related
to five physicochemical properties of the substrate: x1 salinity (h), x2 acidity as
measured in water pH, x3 potassium (ppm), x4 sodium (ppm), and x5 zinc (ppm).

Table 5 Parameter estimates, standard errors (in parenthesis) and percentage change
in parameter estimates for Aerial biomass data.

Parameter Full Removed observations

data 5 7 11 12 14

β0 121.907 91.522 94.177 337.617 528.834 99.278
(92.004) (70.039) (72.055) (261.619) (383.275) (76.651)

— -24.92% -22.75% 176.94% 333.80% -18.56%
β1 -8.800 -9.138 -7.481 -12.920 -23.619 -14.804

(9.147) (9.566) (9.338) (10.301) (11.281) (9.144)
— 3.85% -14.98% 46.83% 168.41% 68.23%

β2 364.885 372.445 360.907 355.588 368.315 384.519
(44.692) (48.196) (46.432) (47.796) (48.691) (43.334)

— 2.07% -1.09% -2.55% 0.94% 5.38%
β3 -0.177 -0.329 -0.129 -0.198 -0.114 -0.173

(0.315) (0.485) (0.342) (0.317) (0.300) (0.301)
— 85.14% -27.12% 11.33% -35.66% -2.52%

β4 -0.014 -0.007 -0.016 -0.014 -0.014 -0.012
(0.014) (0.022) (0.015) (0.014) (0.013) (0.013)

— -49.72% 10.68% -4.581 -0.22% -13.83%
β5 -9.097 -8.242 -9.302 -11.341 -11.604 -5.841

(6.821) (7.028) (6.978) (7.375) (7.565) (6.637)
— -9.40% 2.26% 24.67% 27.57% -35.79%

1σ2 1.436 1.475 1.474 1.433 1.254 1.314
— 2.72% 2.66% -0.20% -12.63% -8.45%

λ 1.220 1.601 1.506 0.346 0.193 1.414
— 31.20% 23.48% -71.60% -84.17% 15.92%

edf 5.060 5.029 5.033 5.205 5.345 5.046
— -0.61% -0.55% 2.87% 5.64% -0.28%

1det(Cov(β̂λ)) 0.144 0.248 0.121 1.278 1.510 0.072
— 72.44% -15.69% 788.57% 950.10% -49.92%

1 values multiplied by 105.

Following Meloun and Militký (2001), we fit a linear regression model with inter-
cept. The scaled condition number is given by κ(X) = 58.977 which is an indication
of strong collinearity, a result that agrees with that presented in Section 11.4.3 of
Rawlings et al. (1998). The fit using ridge regression is presented in the second col-
umn of Table 5, whereas the ordinary least squares fit can be consulted in Meloun and
Militký (2001). From Figure 5 we note that the Cook’s distance, the penalized likeli-
hood displacement allow us to identify observations 12, 14, 29 and 34 as influential on
the regression coefficients. Such observations have also been detected by Meloun and
Militký (2001) using diagnostic techniques for LS estimation.
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Table 6 Parameter estimates, standard errors (in parenthesis) and percentage change
in parameter estimates for Aerial biomass data.

Parameter Full Removed observations

data 15 29 30 33 34

β0 121.907 77.666 468.516 125.931 293.648 49.173
(92.004) (61.222) (346.402) (95.240) (226.974) (49.228)

— -36.29% 284.32% 3.30% 140.88% -59.66%
β1 -8.800 -8.563 -16.559 -8.958 -7.521 -1.986

(9.147) (9.286) (10.584) (9.262) (9.682) (8.233)
— -2.69% 88.18% 1.80% -14.53% -77.43%

β2 364.885 366.748 378.537 366.769 337.685 350.156
(44.692) (44.872) (48.927) (47.030) (45.292) (39.907)

— 0.51% 3.74% 0.52% -7.45% -4.04%
β3 -0.177 -0.149 -0.280 -0.183 -0.206 -0.163

(0.315) (0.320) (0.300) (0.320) (0.297) (0.284)
— -16.08% 57.93% 3.08% 15.85% -8.27%

β4 -0.014 -0.015 -0.013 -0.014 -0.014 -0.019
(0.014) (0.014) (0.013) (0.014) (0.013) (0.013)

— 2.75% -9.48% -0.38% -0.39% 36.75%
β5 -9.097 -8.702 -14.371 -9.270 -13.730 -10.067

(6.821) (6.864) (7.449) (6.968) (6.938) (6.127)
— -4.34% 57.98% 1.90% 50.94% 10.67%

1σ2 1.436 1.475 1.281 1.466 1.274 1.173
— 2.73% -10.76% 2.14% -11.27% -18.27%

λ 1.220 1.800 0.228 1.185 0.402 2.100
— 47.56% -81.30% -2.88% -67.09% 72.15%

edf 5.060 5.021 5.308 5.061 5.199 5.014
— -0.77% 4.90% 0.01% 2.74% -0.91%

1det(Cov(β̂λ)) 0.144 0.076 1.452 0.207 0.543 0.016
— -47.12% 909.50% 43.60% 277.36% -89.13%

1 values multiplied by 105.

0 10 20 30 40

0.
00

0.
05

0.
10

0.
15

Index

C
oo

k'
s 

di
st

an
ce

s

12

14

29

34

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

P
en

al
iz

ed
 li

ke
lih

oo
d 

di
sp

la
ce

m
en

t

12

14

29

34

(b)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

Le
ve

ra
ge

s

5

(c)

Fig. 5 Influence measures for Aerial biomass data: (a) Cook’s distances,D∗∗
i , (b) penalized likelihood

displacement, LDi(β|σ2), and (c) index plot of leverages, hii(λ).

As can be seen from Figure 5 (c) observation 5 is identified as a leverage, moreover
is labeled as influential using the Kullback-Leibler divergence (see Figure 7). Obser-
vations 12, 14, 33 and 34 are identified as extreme by the local influence procedure
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based on LD(ω) (see Figures 6 (a) and (b)). In addition, the direction of the greatest
local change on the GCV criterion depicted in Figures 6 (c) and (d) allows us to note
that observations 7, 11, 12, 15 and 34 have a strong impact on the selection of the
ridge parameter (compare with Tables 5 and 6).
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Fig. 6 Influence measures for Aerial biomass data: Index plot of hmax based on LD(ω) under (a)
perturbation of variances, (b) response perturbation. Index plot of hmax based on GCV(λ,ω) under
(c) perturbation of variances, and (d) response perturbation.

Assessment of local influence based on Kullback-Leibler divergence identifies obser-
vations 29 and 30 as influential (see Figure 8 (a)). The brief confirmatory analysis
shown in Tables 5 and 6 present the percentages of change when some selected obser-
vations are removed from the dataset. This allows us to verify the role played by each
of these extreme data. For example, it can be noted that removing observation 29
increases the determinant of the covariance matrix of the estimated coefficients by
909.50%. It is remarkable to note that although observation 30 individually exerts
an increase of 43.60% on the determinant of Cov(β̂λ). When both observations are
removed, i.e., 29 and 30, this relative change rises to 1903.26%, which allows us to
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realize the extreme nature of these cases. Therefore, it is interesting to note that obser-
vation 30 is not identified by traditional diagnostic methods. In fact, using traditional
diagnostic methods, observation 29 hides the influence of observation 30, whereas the
local influence technique is able to reveal their joint effect on the covariance of the
regression coefficients. Furthermore, it is interesting to note from Figure 8 (b) that
the response perturbation scheme on KL(ω) leads to identify observation 5 as well as
observations 7, 11, and 15 as strongly influential. In fact, removing the 11th observa-
tion increases the covariance of the coefficients by 788.57%. This result is consistent
with the observations identified in Figure 6 (b).

Figure 9 presents the influence plot considering the perturbation of explanatory
variables. We can notice that observations 27, 28 and 29 (Figure 9 (a)) have impact on
x1, whereas cases 32, 34 and 35 exert a strong influence on x3 and x4 (see Figure 9 (b),
(c)), observations that, as reported in the previous figures, affect different aspects of
the proposed model. It is interesting to note that when x5 is perturbed, observations
37 and 44 are detected. To the best of our knowledge, these cases have not been
detected by other diagnostic methods.

0 10 20 30 40

0
1

2
3

4

Index

K
L 

di
ve

rg
en

ce

5

Fig. 7 Index plot of KLi for Aerial biomass data.

5 Concluding remarks

In this paper we have explored two perspectives to perform the influence diagnostics
based on the Kullback-Leibler divergence considering the distributions associated to
the estimators for the case-deletion model as well as the local influence analysis under
different perturbation schemes. Previous experience using divergence measures to per-
form diagnostic analyses has only considered techniques based on case-deletion. To
the best of our knowledge, the assessment of local influence based on divergence mea-
sures has been studied only from a Bayesian perspective, while the approach proposed

23



0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

hm
ax

29

30

(a)

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ei
ge

nv
ec

to
rs

5

7 11
15 28

29
27

(b)

Fig. 8 Index plot of hmax based on KL(ω) under (a) perturbation of variances, and (b) response
perturbation, Aerial biomass data.

in this paper has not been considered previously. It is noteworthy that the mea-
sures introduced in this work have allowed the identification of observations that were
not determined using traditional diagnostic methods and thus represent a valuable
complement to traditional procedures.

As noted in Remark 2, other diagnostic measures based on the Kullback-Leibler
divergence can be proposed. For example, in our context of ridge regression, Jeffreys’
divergence adopts the form

Ji =
1

2
δ⊤{Cov−1(β̂λ) + Cov−1(β̂λ(i))}δ − p

+
1

2
tr{Cov(β̂λ) Cov

−1(β̂λ(i)) + Cov(β̂λ(i)) Cov
−1(β̂λ)}.

However, one aspect in which this measure differs with (8) is the term that depends on

the ratio of determinants |Cov(β̂λ)|/|Cov(β̂λ(i))|, which is related to the COVRATIO
statistic. Exploring the connections that may exist between the diagnostic measures
developed in this work with existing measures following a perspective such as that
adopted by Schall and Dunne (1992) deserves to be addressed. Along these lines it
could be of particular interest to adapt these types of diagnostic techniques based on
divergence measures for the detection of collinearity-influential data points. Several
studies (Mason and Gunst, 1985; Hadi, 1988; Walker, 1989; Hadi and Wells, 1990;
Wang and Nyquist, 1991) have warned that certain extreme observations can exert
a strong effect on the eigenstructure that originates from the model matrix. The
main conclusion of such studies is that observations with high leverage are precisely
those that can strongly affect the conditioning of the model matrix. In particular,
our numerical experiments provide some evidence that the proposed methodology is
capable of identifying collinearity-influential observations. This kind of development
is noteworthy, since in fact Hadi and Velleman (1987) points out in the discussion of
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Fig. 9 Index plot of hmax based on KL(ω) under perturbation of explanatory variables, for (a) x1

salinity, (b) x3 potassium, (c) x4 sodium, and (d) x5 zinc.

Stewart (1987) that measures to detect the presence of collinearity can be affected by
observations with high leverage as well as collinearity-influential observations.

An interesting aspect pointed out to us by one of the referees corresponds to the
evaluation of the local influence on the choice of the ridge parameter as developed in
Shi and Wang (1999). In this paper, we have addressed the effect of atypical observa-
tions on the selection of λ considering the GCV criterion. Furthermore, a very relevant
aspect of our developments has been to study whether each of the considered per-
turbation schemes are appropriate according to the perspective outlined in Zhu et al.
(2007).

We should stress that the threshold we used in the local influence plots is quite
simple. Our aim is to improve the benchmark choice following the methodology pro-
posed by Shi and Huang (2011) and use the detection strategy described by Aoki et al.
(2022, 2023). These developments will also be included in the india package (Osorio,
2023) for R.
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Appendix A Local influence based on the penalized
likelihood for ridge regression

In this appendix we derive the differentials d2θ ℓλ(θ) and d2θω ℓλ(θ,ω) for the pertur-
bation schemes introduced in Section 3.2. The necessary curvature matrices

FLD = ∆⊤(ω0){−ℓ̈λ(θ̂)}−1∆(ω0),

where

ℓ̈λ(θ̂) =
∂2ℓλ(θ)

∂θ∂θ⊤

∣∣∣
θ=θ̂λ

, ∆(ω0) =
∂2ℓλ(θ,ω)

∂θ∂ω⊤

∣∣∣
θ=θ̂λ,ω=ω0

,

are obtained using the differentiation method and by applying some identification
theorems discussed in Magnus and Neudecker (2019).

A.1 Observed information matrix

Following Osorio (2016), we consider the penalized likelihood displacement as an
influence function, i.e,

LD(ω) = 2{ℓλ(θ̂λ)− ℓλ(θ̂λ(ω))},

where

ℓλ(θ) = −n

2
log 2πσ2 − 1

2σ2

(
∥Y −Xβ∥2 + λ∥β∥2

)
.

Obtaining the first differential of ℓλ(θ) with respect to β and σ2, it follows that

dβ ℓλ(θ) =
1

σ2
{X⊤(Y −Xβ)− λβ}⊤ dβ
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dσ2 ℓλ(θ) =
{
− n

2σ2
+

1

2σ4

(
∥Y −Xβ∥2 + λ∥β∥2

)}
dσ2.

Differentiating again in relation to θ = (β⊤, σ2)⊤, we arrive at

d2β ℓλ(θ) = − 1

σ2
(dβ)⊤(X⊤X + λIp) dβ,

d2σ2β ℓλ(θ) = − 1

σ4
dσ2{X⊤(Y −Xβ)− λβ}⊤ dβ

d2σ2 ℓλ(θ) =
{ n

2σ4
− 1

σ6

(
∥Y −Xβ∥2 + λ∥β∥2

)}
dσ2 dσ2.

Noting that β̂λ = (X⊤X + λIp)
−1X⊤Y , leads to X⊤(Y −Xβ̂λ)− λβ̂λ = 0, which

allows us to write
d2σ2β ℓλ(θ)

∣∣
θ=θ̂λ

= 0.

In addition

d2σ2 ℓλ(θ)
∣∣
θ=θ̂λ

=
( n

2σ̂4
λ

− nσ̂2
λ

σ̂6
λ

)
dσ2 dσ2 = − n

2σ̂4
λ

dσ2 dσ2.

Using the second identification theorem of Magnus and Neudecker (2019), yields

−ℓ̈λ(θ)
∣∣
θ=θ̂λ

= −∂2ℓλ(θ)

∂θ∂θ⊤

∣∣∣
θ=θ̂λ

=
1

σ̂2
λ

(
X⊤X + λIp 0

0 n
2σ̂2

λ

)
.

A.2 Perturbation schemes

Next, we derive matrix ∆(ω0) for different perturbation schemes. For each case, we
obtain the second differential d2θω ℓλ(θ,ω). It is straightforward to note that evaluating

these differentials at θ = θ̂λ and ω = ω0 leads to ∆(ω0) =
(
∆⊤

β (ω0),∆
⊤
σ2(ω0)

)⊤
,

where

∆β(ω0) =
∂2ℓλ(θ,ω)

∂β∂ω⊤

∣∣∣
θ=θ̂λ,ω=ω0

, ∆σ2(ω0) =
∂2ℓλ(θ,ω)

∂σ2∂ω⊤

∣∣∣
θ=θ̂λ,ω=ω0

,

A.2.1 Perturbation of variances

For the perturbation scheme defined in Equation (9), the perturbed log-likelihood
function is given by

ℓλ(θ,ω) = −n

2
log 2πσ2 +

1

2
log |W | − 1

2σ2

{
(Y −Xβ)⊤W (Y −Xβ) + λ∥β∥2

}
.

Thus, the second differential of ℓλ(θ,ω) in relation to β and σ2, assume the form

d2βω ℓλ(θ,ω) =
1

σ2
(dβ)⊤X⊤ diag(ϵ) dω,
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d2σ2ω ℓλ(θ,ω) =
1

2σ4
dσ2ϵ⊤ diag(ϵ) dω.

The above allows us to write,

∆β(ω0) =
1

σ̂2
λ

X⊤ diag(eλ), ∆σ2(ω0) =
1

σ̂4
λ

e⊤λ diag(eλ),

where eλ = Y −Xβ̂λ.

Obtaining the second differential with relation to ω and taking expectations we
arrive to,

E{− d2ω ℓλ(θ,ω)} =
1

2
trW−1(dW )W−1 dW

=
1

2
(d vecW )⊤(W−1 ⊗W−1) d vecW .

Evaluating at ω = ω0 (= 1n), and using the second identification theorem stated in
Magnus and Neudecker (2019), it follows that

G(ω0) = E
{
− ∂2ℓλ(θ,ω)

∂ω∂ω⊤

}∣∣∣
ω=ω0

= 1
2 In.

This allows to verify that this perturbation scheme is appropriate under the terms
defined by Zhu et al. (2007).

A.2.2 Response perturbation

In the case of the perturbation of observed responses, i.e., Y (ω) = Y + ω we obtain
that the perturbed log-likelihood function becomes

ℓλ(θ,ω) = −n

2
log 2πσ2 − 1

2σ2

{
∥Y + ω −Xβ∥2 + λ∥β∥2

}
.

Using the differentiation method, we have that

d2βω ℓλ(θ,ω) =
1

σ2
(dβ)⊤X⊤ dω,

d2σ2ω ℓλ(θ,ω) =
1

2σ4
dσ2(Y − ω −Xβ)⊤ dω.

This leads to,

∆β(ω0) =
1

σ̂2
λ

X⊤, ∆σ2(ω0) =
1

σ̂4
λ

e⊤λ ,

where eλ = Y −Xβ̂λ. It is straightforward to verify that

E{−d2ω ℓλ(θ,ω)} =
1

σ2
(dω)⊤ dω.
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That is

G(ω0) = E
{
− ∂2ℓλ(θ,ω)

∂ω∂ω⊤

}∣∣∣
ω=ω0

=
1

σ2
In,

from this it follows that the perturbation scheme is the appropriate one.

A.2.3 Perturbation of the explanatory variables

For the perturbed model in (10), the log-likelihood function adopts the form

ℓλ(θ,ω) = −n

2
log 2πσ2 − 1

2σ2

{
∥Y −Xβ − aωc⊤t β∥2 + λ∥β∥2

}
.

It is possible to show that

d2βω ℓλ(θ,ω) =
a

σ2
(dβ)⊤

{
ct(Y −X(ω)β)⊤ − c⊤t βX(ω)

}⊤
dω,

d2σ2ω ℓλ(θ,ω) = −ac⊤t β

σ4
dσ2(Y −Xβ − aωc⊤t β)

⊤ dω.

Using the second identification theorem in Magnus and Neudecker (2019), it follows
that

∆β(ω0) =
a

σ̂2
λ

(eλc
⊤
t − c⊤t β̂λX)⊤, ∆σ2(ω0) = −ac⊤t β̂λ

σ̂4
λ

e⊤λ ,

where eλ = Y −Xβ̂λ.

To evaluate whether the perturbation scheme is appropriate note that,

d2ω ℓλ(θ,ω) = −a2(c⊤t β)

σ2
(dω)⊤ dω.

It follows that the information matrix with respect to ω is given by

G(ω0) = E
{
− ∂2ℓλ(θ,ω)

∂ω∂ω⊤

}∣∣∣
ω=ω0

=
a2β2

t

σ2
In,

where βt = c⊤t β, and therefore the perturbation scheme is appropriate.
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Kaçıranlar S, Sakallıoǧlu S, Akdeniz F, Styan GPH, Werner HJ (1999) A new biased estima-
tor in linear regression and a detailed analysis of the widely-analysed dataset on Portland
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Muñoz-Garćıa J, Muñoz-Pichardo JM, Pardo L (2006) Cressie and Read power-divergences
as influence measures for logistic regression models. Computational Statistics & Data
Analysis 50:3199-3221.

Nel D (1980) On matrix differentiation in statistics. South African Statistical Journal
14:137-193.

Osorio F (2016) Influence diagnostics for robust P-splines using scale mixture of normal
distributions. Annals of the Institute of Statistical Mathematics 68:589-619.

Osorio F (2023) india: Influence diagnostics in statistical models. R package version 0.1.
https://doi.org/10.32614/CRAN.package.india

Osorio F, Ogueda A (2024) fastmatrix: Fast computation of some matrices useful in statis-
tics. R package version 0.5-772. https://doi.org/10.32614/CRAN.package.fastmatrix

Pan JX, Fang KT, Liski EP (1996) Bayesian local influence for the growth curve model with
Rao’s simple covariance structure. Journal of Multivariate Analysis 58:55-81.

Pan JX, Fang KT, von Rosen D (1999) Bayesian local influence for the growth curve model
with unstructured covariance. Biometrical Journal 41:641-658.

Pan JX, Fung WK (2000) Bayesian influence assessment in the growth curve model with
unstructured covariance. Annals of the Institute of Statistical Mathematics 52:737-752.

Poon W, Poon Y (1999) Conformal normal curvature and assessment of local influence.
Journal of the Royal Statistical Society, Series B 61:51-61.

Pregibon D (1981) Logistic regression diagnostics. The Annals of Statistics 9:705-724.

31

https://doi.org/10.32614/CRAN.package.india
https://doi.org/10.32614/CRAN.package.fastmatrix


Rawlings JO, Pantula SG, Dickey DA (1998) Applied Regression Analysis: A Research Tool.
2nd Ed. Springer, New York.

Schall R, Dunne TT (1992) A note on the relationship between parameter collinearity and
local influence. Biometrika 79:399-404.

Shi JQ, Wei BC (1995) Bayesian local influence. Mathematica Applicata 8:237-245.

Shi L (1997) Local influence in principal components analysis. Biometrika 84:175-186.

Shi L, Wang X (1999) Local influence in ridge regression. Computational Statistics & Data
Analysis 31:341-353.

Shi L, Huang M (2011) Stepwise local influence analysis. Computational Statistics & Data
Analysis 55:973-982.

Steece BN (1986) Regression space outliers in ridge regression. Communications in Statistics
- Theory & Methods 15:3599-3605.

Stewart GW (1987) Collinearity and least squares regression (with discussion). Statistical
Science 2:68-100.

Thomas, W (1991) Influence diagnostics for the cross-validated smoothing parameter in
spline smoothing. Journal of the American Statistical Association 86:693-698.

Ullah A (1996) Entropy, divergence and distance measures with econometric applications.
Journal of Statistical Planning and Inference 49:137-162.

Walker E (1989) Detection of collinearity-influential observations. Communications in
Statistics: Theory & Methods 18:1675-1690.

Walker E, Birch JB (1988) Influence measures in ridge regression. Technometrics 30:221-227.

Wang SG, Nyquist H (1991) Effects on the eigenstructure of a data matrix when deleting an
observation. Computational Statistics & Data Analysis 11:179-188.

Wei BC, Shih JQ (1994) On statistical models for regression diagnostics. Annals of the
Institute of Statistical Mathematics 46:267-278.

Woods H, Steinour H, Starke H (1932) Effect of composition of portland cement on heat
evolving during hardening. Industrial & Engineering Chemistry 24:1207-1214.

Wu X, Luo Z (1993) Second, order approach to local influence. Journal of the Royal Statis-
tical Society, Series B 55:929-936.

Zhu H, Ibrahim JG, Lee S, Zhang H (2007) Perturbation selection and influence measures in

local influence analysis. The Annals of Statistics 35:2565-2588.

32


	Introduction
	Background and definition
	Influence diagnostics

	Kullback-Leibler based influence measures
	Case-deletion procedure
	Local influence procedure
	Perturbation of variances
	Response perturbation
	Perturbation of the explanatory variables


	Numerical experiments
	Monte Carlo study
	Real-life examples
	Portland cement data
	Aerial biomass


	Concluding remarks
	Local influence based on the penalized likelihood for ridge regression
	Observed information matrix
	Perturbation schemes
	Perturbation of variances
	Response perturbation
	Perturbation of the explanatory variables



