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Abstract. In this supplement, we present some basic properties of the multi-

variate t-distribution based on the parameterization introduced by Sutradhar

(1993) and Fiorentini et al. (2003). Then, we provide a detailed description of
the maximum likelihood estimation procedure considering an EM algorithm.

Supplement A. Some properties of the multivariate t-distribution

Definition 1. The random variable U is said to have a gamma distribution, written
as U ∼ Gamma(a, b), if its probability density function is

f(u) =
baua−1e−bu

Γ(a)
, u, a, b > 0.

We have the following moments:

E(U) = a/b, var(U) = a/b2, E(log(U)) = ψ(a)− log(b),

where ψ(u) = d log(Γ(u))/du is digamma function. The following result presents a
summary of the properties of the t distribution.

Property 2. Let X ∼ Tp(µ,Σ, η) be a random vector with density function defined
in Equation (1) from manuscript. Then, the random vector X has the following
properties:

(i) The random vector X can be written using the following representation:

X|v ∼ Np(µ,Σ/v) and v ∼ Gamma
( 1

2η
,

1

2c(η)

)
,

with c(η) = η/(1− 2η).

(ii) For v ∼ Gamma
(

1
2η ,

1
2c(η)

)
, we have

E(u−r) =
( 1

2c(η)

)r Γ
(

1
2η − r

)
Γ
( 1

2η

) , r <
1

η
.

(iii) E(X) = µ and Cov(X) = Σ. Moreover, by using conditional expectations,
we obtain

E(X) = E(E(X|v)) = µ,

Cov(X) = E(Cov(X|v)) + Cov(E(X|v)) = Σ.
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(iv) Let δ2 = (X − µ)>Σ−1(X − µ). Then, the random variable

F =
( 1

1− 2η

)δ2

p
∼ F (p, 1/η),

with E(δ2) = p.
(v) The multivariate kurtosis coefficient (Mardia, 1970) is given by

β2,p = E[{(X − µ)>Σ−1(X − µ)}2] = p(p+ 2)(κ+ 1),

where κ = 2η/(1− 4η) represents the excess of the kurtosis.

We use Z = X − µ d
= v−1/2Y , where Y ∼ Np(0,Σ). Then, we have

that

β2,p = E(Z> E−1(ZZ>)Z)2 = E(v−1Y > E−1(u−1Y Y >)Y )2

=
E(v−2)

E2(v−1)
E(Y > E−1(Y Y >)Y )2 =

(1− 2η

1− 4η

)
p(p+ 2), η < 1/4.

In addition, because (1 − 2η)/(1 − 4η) > 1 for 0 ≤ η < 1/4, we have that
the kurtosis of the multivariate t distribution is always higher than that of
the normal distribution (Yamaguchi, 2003).

(vi) Using results in Abramowitz and Stegun (1970), [p. 257], it follows that

lim
η→0+

Kp(η) = 1/(2π)p/2 and lim
η→0+

(
1 + c(η)δ2

)−1/2η
= exp(−δ2/2),

and then, when η → 0+, the multivariate normal distribution is obtained,
whose density is given by

fN (x) = (2π)−p/2|Σ|−1/2 exp(−δ2/2), x ∈ Rp.

The following lemma, adapted from Sutradhar (1993) and Bolfarine and Galea
(1996), allows us to compute the expected information matrix (see also Lange et
al., 1989).

Lemma 3. If Z ∼ Tp(0,Σ, η) and if q = 1 + c(η)δ2 with δ2 = Z>Σ−1Z, then

(i) E(q−1) = (1 + ηp)−1,
(ii) E(q−1Z) = 0,

(iii) E(q−1ZZ>) = {(1− 2η)/(1 + ηp)}Σ,
(iv) E(q−1δ2) = p(1− 2η)/(1 + pη),
(v) E(q−2) = (1 + 2η)/(1 + ηp)(1 + (p+ 2)η),
(vi) E(q−2Z) = 0,

(vii) E(q−2ZZ>) = {(1− 2η)/(1 + ηp)(1 + (p+ 2)η)}Σ,
(viii) E(q−2δ2) = pc−1(η)η/(1 + ηp)(1 + (p+ 2)η),
(ix) E(q−2δ2Z) = 0,

(x) E(q−2δ2ZZ>) = {(1− 2η)2(p+ 2)/(1 + ηp)(1 + (p+ 2)η)}Σ,
(xi) E(q−2δ4) = p(p+ 2)(1− 2η)2/(1 + ηp)(1 + (p+ 2)η),

(xii) E(log q) = ψ
(

1+ηp
2η

)
− ψ

(
1
2η

)
,

(xiii) E{c(η)δ2q−1} = pη
1+pη .

Next, an extension of Theorem 4.1 (i) given in Magnus and Neudecker (1979) is
presented.
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Lemma 4. Assume that Y ∼ Np(0,Σ); then,

E(Y Y > ⊗ Y Y >) = 2(Σ⊗Σ)Np + (vec Σ)(vec Σ)>,

where Np = 1
2 (Ip2 +Kp), with Kp as the commutation matrix of order p.

Lemmas 3 and 4 allow us to establish the following result:

Lemma 5. Let Z ∼ Tp(0,Σ, η) and q = 1 + c(η)δ2. Then,

E(q−2ZZ> ⊗ZZ>) =
(1− 2η)2

(1 + ηp)(1 + (p+ 2)η)

{
2(Σ⊗Σ)Np + (vec Σ)(vec Σ)>

}
.

because 1 + c(η)δ2 d
= 1 + pηF (p, 1/η).

Supplement B. ML estimation using the EM algorithm

The EM algorithm (Dempster et al., 1977) corresponds to an iterative procedure
that applies a data augmentation scheme by introducing latent variables or missing
data, indicated by Xmis, to enable the easy manipulation of the log-likelihood func-
tion of complete dataXcom = (X>obs,X

>
mis)
>, denoted by Lc(θ). The EM algorithm

then maximizes the log-likelihood function of observed data, L(θ), iteratively by
alternating between the following two steps:

E-step: For a current estimation θ(k), compute the conditional expectation

Q(θ|θ(k)) = E[Lc(θ)|xobs,θ
(k)],

M-step: Update θ(k+1) by maximizing Q(θ|θ(k)) in relation to θ.

It can be shown (see Wu, 1983) that under mild general conditions, the EM
algorithm increases the observed data log-likelihood function after each iteration

and that the sequence {θ(k)} converges to a stationary point of L(θ).
To obtain the maximum likelihood estimate in our context, we augmented the

observed data, Xobs = {X>1 , . . . ,X
>
n } by incorporating latent variables to obtain

Xcom = {(X>1 , v1), . . . , (X>n , vn)}. Thus, we consider the following hierarchical
model:

Xi|vi
ind∼ Np(µ,Σ/vi), and vi

ind∼ Gamma
( 1

2η
,

1

2c(η)

)
, (S.1)

for i = 1, . . . , n. Based on the hierarchical structure of the model for the augmented
data given in (S.1), clearly, the conditional distribution required to evaluate the
expectation step of the EM algorithm takes the form

vi|xi
ind∼ Gamma

(1/η + p

2
,

1/c(η) + δ2
i

2

)
, i = 1, . . . , n.

Thus, the conditional expectation of the complete-data log-likelihood function can
be expressed as

Q(θ|θ(k)) = Q1(µ,φ|θ(k)) +Q2(η|θ(k)),
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where

Q1(µ,φ|θ(k)) = −n
2

log|Σ| − 1

2

n∑
i=1

v
(k)
i (xi − µ)>Σ−1(xi − µ), (S.2)

Q2(η|θ(k)) = n
{ 1

2η
log
( 1

2c(η)

)
− log Γ

( 1

2η

)
+

1

2c(η)

[
ψ
(1/η(k) + p

2

)
− log

(1/η(k) + p

2

)
+

1

n

n∑
i=1

(log v
(k)
i − v

(k)
i )
]}
. (S.3)

In this case, the weights v
(k)
i defined by the EM algorithm correspond to the fol-

lowing conditional expectations:

v
(k)
i = E(ui|xi,θ(k)) =

1/η(k) + p

1/c(η(k)) + δ2
i (τ (k))

.

To update µ(k+1) and φ(k+1), we maximize Q1(µ,φ|θ(k)) given in (S.2) in relation
to µ and φ to obtain

µ(k+1) =
1∑n

j=1 v
(k)
j

n∑
i=1

v
(k)
i xi, (S.4)

Σ(k+1) =
1

n

n∑
i=1

v
(k)
i (xi − µ(k+1))(xi − µ(k+1))>. (S.5)

In addition, we can independently update the shape parameter of the t-distribution

by maximizing Q2(η|θ(k)) defined in Equation (S.3) using a unidimensional opti-
mization procedure. The parameter estimation approach proposed in this work has
been implemented in an R package named MVT, which is available at CRAN.

References

Abramowitz, M., Stegun, I.A. (1970). Handbook of Mathematical Functions. Dover, New
York.

Bolfarine, H., Galea, M. (1996). On structural comparative calibration under a t-model.
Computational Statistics 11, 63-85.

Dempster, A.P., Laird, N.M., Rubin, D.B. (1977). Maximum likelihood from incomplete
data via the EM algorithm (with discussion). Journal of the Royal Statistical Society,
Series B 39, 1-38.

Fiorentini, G., Sentana, E., Calzolari, G. (2003). Maximum likelihood estimation and
inference in multivariate conditionally heteroscedastic dynamic regression models with
Student t innovations. Journal of Business & Economic Statistics 21, 532-546.

Lange, K., Little, R.J.A., Taylor, J.M.G. (1989). Robust statistical modeling using the t
distribution. Journal of the American Statistical Association 84, 881-896.

Magnus, J.R., Neudecker, H. (1979). The commutation matrix: Some properties and
applications. The Annals of Statistics 7, 381-394.

Mardia, K.V. (1970). Measures of multivariate skewness and kurtosis with applications.
Biometrika 57, 519-530.

Sutradhar, B.C. (1993). Score test for the covariance matrix of elliptical t-distribution.
Journal of Multivariate Analysis 46, 1-12.

Wu, C.F.J. (1983). On the convergence properties of the EM algorithm. The Annals of
Statistics 11, 95-103.

https://cran.r-project.org/package=MVT


ADDRESSING NON-NORMALITY IN MULTIVARIATE ANALYSIS 5

Yamaguchi, K. (2003). Robust model and the EM algorithm. In: Watanabe, M.,

Yamaguchi, K. (eds.) The EM Algorithm and Related Statistical Models, pp. 37-64.

Marcel Dekker, New York.

Departamento de Matemática, Universidad Técnica Federico Santa Maŕıa, Chile
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