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SUMMARY. In this supplement some additional simulation results are pre-
sented. An explicit expression for the expected information matrix is derived
and provide some details about the computational implementation of the gra-
dient statistic for the nonlinear regression model with multiplicative noise de-
scribed at Section 2 from the manuscript. A brief description of the filters
used in the work as well as additional results of the simulation study are also
presented.

APPENDIX A. ADDITIONAL SIMULATION RESULTS

Tables 1 and 2 present the averages of parameter estimates for the SSIM index
for Lena and Baboon reference images. The results were obtained from 1,000 Monte
Carlo simulations.

TABLE 1. Averages of parameter estimates of the SSIM index for

Lena image.
Number No filter Lee filter
of looks a 8 B a B %

1 1.000 1.000 1.000 1.001 1.001 1.020
2 1.000 1.000 1.002 1.007 1.008 1.117
4 1.004 1.004 1.084 1.061 1.068 1.420
8 1.054 1.062 1.404 1.183 1.201 1.875
16 1.182 1.205 1.759 1.306 1.341 2.410
32 1.388 1.436 2.381 0.762 0.811 2.574

Number Enhanced Lee filter Kuan filter

of looks a 8 B a Io] oY
1 1.001 1.001 1.029 1.003 1.003 1.064
2 1.018 1.019 1.203 1.022 1.024 1.218
4 1.098 1.106 1.603 1.098 1.106 1.607
8 1.191 1.223 2.388 1.235 1.260 2.300
16 1.000 1.000 1.000 1.011 1.007 1.014
32 1.000 1.000 1.000 1.000 1.000 1.000

The main manuscript has not undergone improvements or corrections. The Version of record
of the article is published in Signal, Image and Video Processing, and is available online at
https://doi.org/10.1007/s11760-021-02051-9.
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TABLE 2. Averages of parameter estimates of the SSIM index for
Baboon image.

Number No filter Lee filter
of looks a 8 ¥ a B ~

1 1.000 1.000 1.003 1.001 1.001 1.050
2 1.001 1.001 1.038 1.010 1.010 1.166
4 1.014 1.015 1.189 1.052 1.054 1.422
8 1.096 1.104 1.579 1.093 1.097 1.692
16 1.238 1.259 2.161 1.008 1.012 1.739
32 1.094 1.144 2784 0.711 0.715 1.652

Number Enhanced Lee filter Kuan filter
of looks a 8 ¥ a B ~

1 1.001 1.001 1.054 1.003 1.003 1.076
2 1.019 1.019 1.219 1.023 1.023 1.243
4 1.067 1.068 1.517 1.107 1.109 1.642
8 1.092 1.095 1902 1.124 1.129 2.146
16 0.711 0.715 1.809 0.660 0.664 1.834
32 0.985 0.985 1.030 0.768 0.770 1.294

Tables 3 to 4 present the percentage of rejection of the hypothesis Hy : o = 8 =
~v =1 for Lena and Baboon reference images. The results were obtained from 1,000
Monte Carlo simulations.

TABLE 3. Rejection percentages of Hy for Lena image.

Number Filter

of looks | None Lee Enhanced Lee Kuan
1 0.0 182 24.0 38.1
2 3.8 554 69.3 67.9
4 51.4 89.1 92.8 93.5
8 94.4  99.2 99.2 99.2
16 99.7 100.0 0.0 0.2
32 100.0 - 0.0 0.0

TABLE 4. Rejection percentages of Hy for Baboon image.

Number Filter

of looks | None Lee Enhanced Lee Kuan
1 3.9 319 33.9 40.4
2 27.4 61.2 68.3 70.6
4 67.8 87.8 88.5 91.9
8 94.3 94.1 95.1 98.5
16 99.6 94.2 86.4 94.1
32 100.0 12.1 8.2 53.8
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Tables 5 and 6 present the averages of the SSIM index estimates under Hy and
H, for Lena and Baboon reference images. The results were obtained from 1,000
Monte Carlo simulations.

TABLE 5. Averages of the SSIM index estimates for Lena image.

Number No filter Lee filter
of looks Under Hy Under Hy Under Hy Under H;
1 0.413 0.413 0.704 0.629
2 0.549 0.548 0.801 0.781
4 0.682 0.662 0.871 0.823
8 0.795 0.729 0.920 0.856
16 0.879 0.799 0.953 0.891
32 0.933 0.848 0.973 0.933
Number  Enhanced Lee filter Kuan filter
of looks Under Hy Under Hy Under Hy Under H;
1 0.724 0.718 0.792 0.782
2 0.860 0.835 0.881 0.859
4 0.929 0.890 0.931 0.893
8 0.962 0.913 0.959 0.908
16 0.979 0.979 0.975 0.975
32 0.987 0.987 0.985 0.985

TABLE 6. Averages of the SSIM index estimates for Baboon image.

Number No filter Lee filter
of looks Under Hy Under Hy Under Hy Under H;
1 0.258 0.258 0.496 0.480
2 0.383 0.372 0.624 0.580
4 0.527 0.476 0.732 0.645
8 0.670 0.545 0.817 0.712
16 0.790 0.611 0.878 0.798
32 0.876 0.698 0.919 0.871
Number  Enhanced Lee filter Kuan filter
of looks Under Hy Under H; Under Hy Under Hy
1 0.509 0.492 0.560 0.539
2 0.672 0.620 0.689 0.636
4 0.780 0.692 0.784 0.678
8 0.847 0.737 0.850 0.712
16 0.886 0.812 0.896 0.821
32 0.909 0.907 0.929 0.910

Next, we display the Empirical CDF of the SSIM under Hy (black) and Hy (red)
for several looks, based on 1,000 Monte Carlo simulations for images texmos2.5512,
Lena and Baboon. (see Section 3 of the manuscript).
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FIGURE 3. Empirical CDFs: reference image texmos2.5512 using
Enhanced Lee filter.
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APPENDIX B. COMPUTATION OF SCORE FUNCTION FOR THE NONLINEAR
REGRESSION MODEL WITH MULTIPLICATIVE NOISE

To reduce the computational effort associated with quasi-Newton algorithms
(see, for instance Nash, 1990, Chap.15) we can provide first-order information
related to the nonlinear regression model defined by Equation (4) from the man-
uscript. Indeed, for the model with multiplicative noise, it follows that the log-
likelihood function takes the form

) = 5 lox2rg*(0) = 5 08 W (0)] — 555 (Z— 01 (0) W (0)(Z0£(0)).
with £(8) = (f1(6),..., f(0))T and W (6) = diag(f2(0),..., f2(8)). Therefore,
the first differential of £(v)) with respect to 6 is given by
-9 T _
do L(9p) = 2@ (do £(6)) WH(0)(Z - ¢£(0))
r(@)r" 1
- %trW‘l(O){W(H) — w}w_ (0)de W(6), (B.1)

where r(0) = Z — ¢f(0). Using properties of the trace operator and applying the
first identification theorem of Magnus and Neudecker (2007), we obtain that the
score function U(6) = 0¢())/I0 assumes the form:

UB)=U,(0)+U(6),

where
¢ T -1 _
r(@)r’
U () = —%HT(O)V’I(O) vec (W(e) - W},

with H(0) = (vec(O0W (0)/061),...,vec(OW (0)/06,)), p is the the dimension of 0,
vec(+) denotes the vectorization operator, V(0) = W (0) ® W (0) and ® indicates
the Kronecker product.

Below we describe the computational strategy adopted in our C routines to
evaluate the score function for the nonlinear regression model with multiplicative
noise. Thus, we exploit the diagonal structure of W (8) to compute the elements
of U5(0) in a computationally efficient fashion. Noticing that

oW ()
06,

where f”(G) = 0f;(0)/00;, for t =1,...,n; j =1,...,p, yields that the the jth
element of Uy (0) takes the form

= 2diag(f1(0)f1;(8),. .., f2(8)£.;(8)),

1
—tr W)W ;(0) + mﬂ(e)w—l(a)wj(e)W—l(a)r(a), (B.2)
for j = 1,...,p, with W;(0) = 10W(0)/90; and r(0) = Z — ¢f(0). Simple
calculations allow us to note that the first term of Equation (B.2) is given by

w0y (0) — 3 2000

> "o (B.3)
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which is equivalent to adding all the elements of the jth column of the matrix
W 1/2(9)F(6). Moreover, the second term of (B.2) assumes the form

1
9% ()

W OrO) W, OW (0)r(6) = > (1) P B
i=1 1 J

Our implementation computes efficiently the score U (0) evaluating (B.3) and (B.4),
as well as the cross product defined by U1(6) by using the Fortran routine dgemm

from the BLAS library (Lawson et al., 1979) included in the R software (R Core
Team, 2020).

APPENDIX C. EXPECTED INFORMATION MATRIX FOR THE NONLINEAR
REGRESSION MODEL WITH MULTIPLICATIVE NOISE

Here, we derive the differentials dfb L), P = (BT, #) " for the heteroscedastic
nonlinear regression model defined in Section 2 from the manuscript. The Fisher
information matrix F(v) is obtained efficiently using the differentiation method

and by applying some identification theorems discussed in Magnus and Neudecker
(2007).

Taking the differential of dg £(2)) given in (B.1) with respect to 68, we get

@ ap) = 5 tr W (0) dy W(O)W " (6) dy W (6)

1 —1 2 ¢2 —1

—guW (6)dy W(0) — m(de £(6))"WH(8)d, £(6)
2¢ Tyar—1 -1
+ (4 10) W 0)r(0)
1 T -1 2 -1
+ ION (@)W ~1(0)d2 W ()W ~(8)r ()
— 921¢)7‘T(0)W_1(0) do W(O)W () dg W ()W ~1(8)r(6).
Using that
E{r(6)} =0, and E{r(0)r'(0)} = g¢*(¢)W(6), (B.1)

yields that the negative of the expectation of the second differential of ¢(1)) with
respect to @ assumes the form

B{-d3 ()} = L tr W (0)dW(O)W " (8)d, W (6)
¢2 T —1
+ 4 @ F0)TW N 0)d £(0)
¢ Tyr—1

+ %(devecW(G))T(W_l(O) S WL (0))dgvec W(6).  (B.2)
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Taking the first and second differential of ¢(¢)) with respect to ¢ we have

ndg’(9) . £ (O)W ' (9)r(6)d G )W (0)r(6)dg*(¢)

Ao t0) = =5 5g20) T 2(9) 24(9)
2 nrg(¢)d’ g?(¢) —dg?(¢)dg? (@)1 £ (O)W '(0)f(6)dpde
o) = =3 7(9) |- 2
2T OW T (O)r(0)dodg* (@) T (OW ' (0)r(6)d* ¢*(¢)
94(9) 29%(9)
_r (OW H(O)r(0)dg*(9)dg'(9)
g%(9)

Notice that

dg®(¢) =20(2¢° —1)d¢,  dg'(¢) =46°(2¢" — 3¢ —1)d¢. (B.3)

Then the first differential of ¢(1)) with respect to ¢ can be written as:

_FTOwWer®e) o 2001 ., ¢ “1(g)y
dg () = 20) Ky 1)[ ¢ (OWH(0)r(6)] d¢.
From (B.1) and (B.3) and using simple algebra, we obtain
e 1oy - _ng @) f , 2. dg'(9)
B{- &} ()} = 5 |11 @OW HO0)10)dodo - 575 B da0) -~ ]
1 1 2nq(¢)
sy T OW T OF6) + ST dodo, (B.4)

with q(¢) = (2¢* — 1)(2¢* — 3¢* + 1). Differentiating d ¢(1p) with respect to 6 we
have

r (O)W 1 (0)dy f(8)do of (O)W '(0)ds f(0)d o

o £4) = 7(0) - 7(9)
_FTOWTHO) dg W(O)W (O)r(0)de  ¢r ()W '(8)dy £(6)dg*(9)
9*(9) 9*(9)
r ()W 1(0)dg W(O)W ' (8)r(6) dg*(¢)
29%(¢)
Taking expectations and using Equation (B.1), we obtain
¢

E{—dj, ((¢)} = 20 [FTO)W(0)dg £(0)+(26°—1) tr W' (8) dg W(0)] d ¢.
(B.5)

Thus, applying the second identification theorem of Magnus and Neudecker
(2007) to E{—dj £(3)}, E{—d3 £(¢)} and E{— dj, £(4)}, given in Equations (B.2),
(B.4) and (B.5), respectively leads to the Fisher information matrix,

_ (Foo(¥) Fos(¥)
F (¢)_<f3¢(¢) f¢¢(w))’ (B.9)
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where
Fuh) = = FT OW O)F(0) + ;H OV (O)H(6),
Fos®) = = {FTOW ' 0)£(0) + (26° - )H (0) wee W (6) .
Fool) = s { £ OW N 0)1510) + 1T ),

with H(6) € R"*? and V(0) € R"**"" defined in Equation (8) from the man-
uscript. Note that F(t) can also be obtained in the way in which the results
presented by Patriota et al. (2010) were obtained.

APPENDIX D. REMOVING MULTIPLICATIVE NOISE FROM AN IMAGE

In order to describe the value of an image for a particular pixel, we denote an
images as X such that the intensity at the location (i,7) is X (¢,7). Asume that
the image X has been corrupted by a stationary multiplicative noise Y such that
7Z = X -Y. Without loss of generality, we also assume that E(Y) = 1. In practice,

this is Y = 1. Several filters for the multiplicative noise model has been proposed.
For instance, Lee (1980) filter is derived from the equation

Z=X+(Y -1X.

Under the unit-mean noise assumption, the pixel value estimate 7 (i,7) for Lee filter
adopts the form:

Z(i,j) =Y + K(Yo - Y), (D.1)
where the weight function, K is given by
K= 7%2/
S2 +Y%/L

with Y and S2 are estimated from a local window, Y; represents the value at the
center of the window, and L is the number of looks.

Another filter for multiplicative noise was developed by Kuan et al. (1987), which,
such as Lee’s filter, corresponds to a filter with minimum mean square error and is
defined by (D.1), with weight function
_ A2 a2 LSE - v’

A2+ (Y + A2)/L L+1
The last filter we will use in our experiments to remove multiplicative noise was
developed by Lopes et al. (1990) as an enhancement of Lee’s filter, and is defined
as

K

Y, CcvV <1/VL,
Z(i,j) ={ YK +Y,(1-K), 1/VL<CV </1+2/L,
Yo, CV >\/1+2/L,

where C'V = Sy /Y is the coefficient of variation of the local window, and

K =exp{—D(CV —1/VL)/(\/1+2/L - CV)},

with D being a damping factor.
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