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Abstract

The development of new techniques for sample size reduction has attracted growing interest in
recent decades. Recent findings allow us to quantify the amount of duplicated information within
a sample of spatial data through the so-called effective sample size (ESS), whose definition arises
from the Fisher information that is associated with maximum likelihood estimation. However, in
all circumstances where the sample size is very large, maximum likelihood estimation and ESS
evaluation are challenging from a computational viewpoint. An alternative definition of the ESS,
in terms of the Godambe information from a block likelihood estimation approach, is presented.
Several theoretical properties satisfied by this quantity are investigated. Our proposal is evaluated
in some parametric correlation structures, including the intraclass, AR(1), Matérn, and simulta-
neous autoregressive models. Simulation experiments show that our proposal provides accurate
approximations of the full likelihood-based ESS while maintaining a moderate computational cost.
A large dataset is analyzed to quantify the effectiveness and limitations of the proposed framework
in practice.
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1. Introduction

The effective sample size (ESS) has been developed to quantify the number of independent and
identically distributed observations within a sample of size n (Cressie, 1993). Currently, with
the rapid proliferation and acquisition of large datasets, the extraction of the relevant features
and information within such datasets is particularly important, especially when a reduction of
information occurs due to autocorrelation that is present in a set of georeferenced observations
(Griffith, 2005). These considerations are predominantly useful in the analysis of remotely sensed
satellite data because in such a context, the observations generally present high levels of spatial
association, so the amount of duplicated information can be considerable (Griffith, 2015).

The literature on the ESS is substantial. While Vallejos and Osorio (2014) provided a novel
definition for spatial random fields with constant means, Acosta and Vallejos (2018) extended
this quantity for a general spatial regression model, including the asymptotic distribution of the
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maximum likelihood estimator in the context of increasing domain sampling schemes. At the same
time, the ESS has been studied for linear models with replicates (Faes et al., 2009). In a Bayesian
context, Berger et al. (2014) addressed the ESS from a model selection perspective. Chatterjee
and Diaconis (2018) and Elvira et al. (2018) studied the ESS in specific contexts of importance
sampling. ESS applications can be found, for instance, in Solow and Polanky (1994) and Li et al.
(2016), while Lenth (2001) provided practical guidelines for ESS determination.

The ESS introduced by Vallejos and Osorio (2014) is based on the Fisher information associated
with maximum likelihood (ML) estimation under the Gaussian assumption. The objective func-
tions of ML estimation and the ESS depend on the inverse of the correlation matrix, making
their implementations challenging from a computational perspective in all circumstances where
the sample size is very large. Modern approaches require a compromise between statistical and
computational performances. For a thorough review of the current methods for analyzing large
spatial datasets, the reader is referred to Heaton et al. (2019) and the references therein.

To circumvent the so-called “big n” problem, we propose an alternative sample size reduction
approach, which is fully based on block likelihood inference (Caragea and Smith, 2007; Varin
et al., 2011). First, parameter estimation is carried out by means of the block likelihood estimation
method; this accomplishes a trade-off between statistical and computational efficiency, where the
inverses of small correlation matrices are involved. Second, a new notion of the effective sample
size (named ESSB) comes from the Godambe information arising from this estimation framework.
In particular, we focus on the “small blocks” method in Caragea and Smith (2007), which performs
better than other similar competitors (Caragea and Smith, 2007; Varin et al., 2011; Stein, 2013). At
the same time, the “small blocks” version generates a particularly amenable expression for ESSB.
To illustrate the use of ESSB, some parametric correlation structures are revisited, including the
intraclass, AR(1), and Matérn models that were previously analyzed by Vallejos and Osorio (2014),
as well as the simultaneous autoregressive model (see, e.g., Griffith, 2015). Our proposal is also
compared to the full likelihood-based ESS in terms of both statistical and computational efficiency
through Monte Carlo simulation experiments. The proposed methodology is applied on a large
dataset consisting of 21 million observations from a Harvard forest database.

The article is organized as follows. Section 2 briefly reviews the definition, some examples, and the
main theoretical attributes of the traditional ESS. Section 3 introduces ESSB and its properties.
Section 4 discusses computational aspects that permit an efficient implementation of ESSB for
regularly-spaced locations. In Section 5, we calculate ESSB for some parametric families of cor-
relation functions. In Section 6, the discrepancies between the ESS and ESSB estimates obtained
through simulation experiments are assessed. The computational performances of these approaches
are also explored. Section 7 presents a real data application. Finally, Section 8 is a discussion of
the main findings, and this includes problems to study in future research. For a neater exposition,
the proofs of the main results are given in Appendix A, and additional numerical studies that
complement the main findings of the manuscript are contained in Appendix B.

2. Background

In this section, an approach that allows us to quantify the amount of duplicated information within
a sample of spatial data due to the effect of spatial autocorrelation is described. This approach,
proposed by Vallejos and Osorio (2014), is based on Fisher information about the mean.
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Consider a spatial random field, {X(s) : s ∈ Rd}, and let X(s1), . . . , X(sn) be a realization at
n spatial locations. For simplicity, we use the notations Xi = X(si) and X = (X1, . . . , Xn)>,
with > standing for the transpose operator. Suppose that the random field has a constant mean
µ ∈ R, such that E(X) = µ1n, where 1n is an n × 1 vector of ones, and a constant variance
σ2 > 0. Let R(θ) denote the n × n correlation matrix of X, where θ is a vector of unknown
parameters. Assume that X follows a multivariate Gaussian distribution. To discard redundant
observations while preserving the essential information of a sample, Vallejos and Osorio (2014)
proposed the definition of an effective sample size (ESS), a quantity that depends on the sample
size, the covariance structure of the random field and the dimensionality of the spatial domain.

Definition 2.1. Let R(θ) be a non-singular correlation matrix. The ESS is defined as

ESS = ESS(n,R(θ), d) = 1>nR(θ)−11n. (2.1)

When the correlation matrix is singular, Definition 2.1 can be slightly modified. For such a case,
an alternative definition (Vallejos and Osorio, 2014) is considered:

ESS = 1>nR(θ)+1n,

where R(θ)+ denotes the uniquely determined Moore-Penrose pseudoinverse of R(θ) (see, e.g.,
Magnus and Neudecker, 1988).

This definition of the ESS arose as a normalized version of the Fisher information about µ. More
precisely, it can be written as

ESS = −σ2E
(
∂2`(µ, σ2,θ|X)

∂µ2

)
,

where

`(µ, σ2,θ|X) = −1

2
log |σ2R(θ)| − 1

2σ2
(X − µ1n)>R(θ)−1 (X − µ1n)

is the log-likelihood function (up to an additive constant) of X.

The ESS satisfies several appealing properties. For example, under perfect positive correlation,
R(θ) = 1n1

>
n and R(θ)+ = n−21n1

>
n ; thus,

ESS =
1>n 1n1

>
n 1n

n2
= 1.

On the other hand, when all observations are independent, one has R(θ) = In, where In is the
n× n identity matrix, and so

ESS = 1>n In1n = n.

Another interesting and intuitive property proved by Vallejos and Osorio (2014) is that the ESS
is increasing with n. The following examples show that in some special situations, the ESS has
closed-form expressions (Vallejos and Osorio, 2014).

Example 2.1. For the intraclass correlation structure,

R(ρ) = (1− ρ)In + ρ1n1
>
n , (2.2)
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where −1/(n− 1) < ρ < 1, one has

ESS =
n

1 + (n− 1)ρ
. (2.3)

Example 2.2. Another interesting case occurs when the correlation structure of an AR(1) process
is considered. In this case, the (i, j)th entry of the correlation matrix R(ρ) is given by

Rij(ρ) = ρ|i−j|, (2.4)

where 0 < ρ < 1. The ESS for this particular structure is

ESS =
2 + (n− 2)(1− ρ)

1 + ρ
. (2.5)

In Examples 2.1 and 2.2, as ρ → 0, we recover the limiting case of independence (ESS = n).
Similarly, ρ→ 1 corresponds to a perfect positive correlation (ESS = 1). For arbitrary correlation
matrices with no explicit inverses, (2.1) must be evaluated numerically.

The ESS can be estimated through the plug-in estimate ÊSS = 1>nR(θ̂ML)−11n, where θ̂ML is the
maximum likelihood estimate of θ. Since matrix inversion has a computational cost proportional
to the cube of the sample size (Aho and Hopcroft, 1974), maximum likelihood estimation and

the evaluation of ÊSS become impractical for large datasets. This motivates the search for an
alternative definition of the ESS.

3. Effective Sample Size Based on Godambe Information: Definition and Properties

An alternative method is proposed to carry out sample size reduction for spatial data. A new
notion of the effective sample size is defined for Gaussian random fields in terms of the Godambe
information about the mean, which comes from block likelihood inference. We shall use the notation
ESSB for our proposal. We expect ESSB to be a reasonable approximation of the traditional ESS.

The block likelihood estimation framework (Caragea and Smith, 2007) is an estimation method
within the class of composite-likelihood methods (Lindsay, 1988; Varin et al., 2011), and it consists
of splitting the given data into m smaller pieces of information. Hence, a partition ∆ = {b1, . . . , bm}
of the set {1, . . . , n} is considered, and the ith block of data is defined as Xbi = (Xj : j ∈ bi) for
i = 1, . . . ,m. The cardinality of bi (i.e., the length of Xbi) is denoted by |bi|, and of course, we
have that |b1|+ · · ·+ |bm| = n. The objective function of the block likelihood method is given by

LB(µ, σ2,θ|X) =
m∏
i=1

Lbi(µ, σ
2,θ|Xbi), (3.1)

where Lbi is the likelihood of the ith block. When the full sample in a single block is considered,
this method is reduced to full likelihood. On the other hand, as the number of blocks increases,
this approach can be seen as a misspecified likelihood, where misspecification comes from the
assumption of independence among blocks. At the same time, an increase in the number of blocks
implies a reduction in the computational burden since we need to compute the inverses of smaller
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correlation matrices. Thus, the block likelihood method provides a trade-off between statistical
and computational efficiency. The corresponding block log-likelihood is given by

`B(µ, σ2,θ|X) = logLB(µ, σ2,θ|X) =
m∑
i=1

`bi(µ, σ
2,θ|Xbi), (3.2)

where `bi(·) = logLbi(·).

Since (3.2) is written as the sum of (sub)log-likelihoods, it is an unbiased estimation equation. As-
suming adequate regularity conditions (see Guyon, 1995 for details), the block likelihood estimator
is consistent and asymptotically Gaussian under increasing domain asymptotics, that is, when the
spatial domain expands as the number of locations increases. In such a case, the Fisher information
matrix must be substituted by the Godambe information matrix, which is defined as

G(ξ) = H(ξ)J(ξ)−1H(ξ), (3.3)

where the vector of parameters is written as ξ = (µ, σ2,θ)>, and H(ξ) = E
{
−∇2

ξ`B(ξ)
}

and

J(ξ) = E
{
∇ξ`B(ξ)∇ξ`B(ξ)>

}
are the sensitivity and variability matrices, respectively. The

asymptotic variance of the block likelihood estimator is given by the inverse of the Godambe
information matrix. In particular, the Godambe information about µ, after being rescaled by σ2,
is given by

σ2 E
(
−∂

2`B(µ, σ2,θ)

∂µ2

)2

E

({
∂`B(µ, σ2,θ)

∂µ

}2
)−1

. (3.4)

Recall that under the Gaussian assumption, the block log-likelihood (3.2) is constructed as the
sum of (sub) log-likelihoods in the following form:

`bi(µ, σ
2,θ|Xbi) = −1

2
log |σ2Rbi(θ)| − 1

2σ2
(
Xbi − µ1|bi|

)>
Rbi(θ)−1

(
Xbi − µ1|bi|

)
, (3.5)

where Rbi(θ) is the |bi| × |bi| correlation matrix of Xbi . Thus, we have the expressions

∂`B(µ, σ2,θ)

∂µ
=

1

σ2

m∑
i=1

1>|bi|Rbi(θ)−1
(
Xbi − µ1|bi|

)
,

and
∂2`B(µ, σ2,θ)

∂µ2
= − 1

σ2

m∑
i=1

1>|bi|Rbi(θ)−11|bi|.

The direct calculation of (3.4) provides the following definition of ESSB.

Definition 3.1. The effective sample size based on a block likelihood approach, denoted by ESSB,
for a nonsingular correlation matrix R(θ) is given by

ESSB = ESSB(n,R(θ), d,∆) =

(
m∑
i=1

ηii

)2

m∑
j=1

m∑
i=1

ηij

, (3.6)
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where
ηij = 1>|bi|R

−1
bi

(θ)Rbibj (θ)R−1bj (θ)1|bj |, (3.7)

and

Rbibj (θ) = σ−2E
{(
Xbi − µ1|bi|

) (
Xbj − µ1|bj |

)>}
is the |bi| × |bj | cross-correlation matrix between blocks i and j, where in particular, Rbibi(θ) is
simply Rbi(θ).

Definition 3.1 can be generalized to the case with singular correlation matrices by considering their
pseudoinverses in a similar fashion to that in the definition provided by Vallejos and Osorio (2014).
Certainly, if the ith block has a singular correlation matrix, we must replace Rbi(θ)−1 by Rbi(θ)+.
Note that ESSB depends strongly on the choice of the block partition ∆.

ESSB preserves some features of the traditional ESS. The following proposition summarizes inter-
esting properties established in this paper for ESSB.

Proposition 3.1. Let ESSB be defined according to (3.6). Thus,

(1) Under independence, ESSB = n.

(2) Under perfect positive correlation, ESSB = 1.

(3) It is always true that 1 ≤ ESSB ≤ ESS.

(4) If m = 1, then ESSB = ESS.

(5) If m = n, then ESSB = n2
(
1>nR(θ)1n

)−1
.

Points (1) and (2) in Proposition 3.1 are elementary properties satisfied by the ESS and preserved
by ESSB. Point (3) implies that ESSB always underestimates the value of the ESS when both
measures are evaluated with the same parameter θ. The examples considered in the next section
show that this discrepancy is often slight. In practice, the ESS and ESSB are evaluated at θ̂ML

and θ̂BL (the block likelihood estimate), respectively, obtaining the respective estimates ÊSS and

ÊSSB, which do not necessarily satisfy the inequality in point (3). In points (4) and (5), the limit
cases for ESSB are described in terms of the number of blocks m. When the entire sample is
taken in a single block, we recover the ESS, whereas for blocks of size one, we obtain the so-called
effective geographic sample size (Griffith, 2005; Acosta et al., 2018), denoted throughout by ESSG.
For a neater exposition, a proof of Proposition 3.1 is available in Appendix A.

If we incorporate a new observation in the original sample, the information cannot decrease, so we
expect ESSB to be nondecreasing with n. The examples studied in the next section suggest that
this is a reasonable conjecture. However, a general proof of this property is still elusive.

Let us recall that under regularity conditions (Guyon, 1995), the block likelihood estimator of
θ ∈ Rp is asymptotically Gaussian with variance characterized by the Godambe information matrix.
Defining

g(θ) = ESSB(n,R(θ), d,∆),

the following proposition characterizes the asymptotic distribution of g(θ̂BL) under an increasing
domain sampling scheme.
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Proposition 3.2. Suppose that as n → ∞, the sequence G1/2θ (θ̂BL − θ) converges in distribution
to the p-variate standard Gaussian distribution. Then, as n→∞, the sequence

(∇g(θ)>G−1θ ∇g(θ))−1/2(g(θ̂BL)− g(θ))

converges in distribution to the (univariate) standard Gaussian distribution.

The proof of this fact is omitted because it is a consequence of the delta method (see Acosta et al.,
2018 for details).

4. Computational Aspects for Regular Grids

Regular grids are common in satellite data and image modeling. In the computation of ESSB,
a regularly gridded spatial design permits the reuse of some calculations. We now discuss some
computational tools that will be used in the subsequent sections.

For a spatial random field defined on a rectangular grid of Z2, assume that all blocks are regular
lattices with the same size. Thus, we can write |bi| = |b| for every i = 1, . . . ,m. Let Hbibj be
the distance matrix between blocks i and j, that is, the (k, r)th entry of Hbibj corresponds to
the distance between the kth site in the ith block and the rth site in the jth block. Observe
that Hbibi = Hb for all i = 1, . . . ,m and for some matrix Hb. As a result, the correlation
matrix of the ith block can be written as Rbi(θ) = Rb(θ), regardless of the correlation structure
used. In particular, we have that η11 = · · · = ηmm. Let v = R−1b (θ)1|b|; then, ηii = 1>|b|v and

ηij = v>Rbibj (θ)v. According to Equation (3.6), ESSB is completely determined by the trace of
η and by the sum of its elements. Thus, a strategy to accelerate the computing time of ESSB is
to take advantage of the structure of η, which under this setting contains repeated elements.

As an illustration, an example is provided in which a regular grid of size n = 30× 24 is partitioned
into m = 9 blocks of the same size (see Figure 4.1). η is built explicitly by taking the arrangement
between blocks into account:

η =



η11 η12 η13 η14 η15 η16 η17 η18 η19
η11 η12 η24 η14 η15 η27 η17 η18

η11 η34 η24 η14 η37 η27 η17
η11 η12 η13 η14 η15 η16

η11 η12 η24 η14 η15
η11 η34 η24 η14

η11 η12 η13
η11 η12

η11


.

The terms below the main diagonal are omitted since η is symmetric. The general idea consists
of summing across the diagonals of η. Each diagonal has at most two different values, and the
number of elements in the ith diagonal is m−i for i = 0, . . . ,m−1, where i = 0 represents the main
diagonal and so on. Hence, each η1i is multiplied by m− i, and the extra elements are subsequently
removed by considering the number of jumps in the batch (see the decomposition into glued blocks
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Figure 4.1: Grid of size 30 × 24 split into m = 9 identical blocks (top) and its decomposition into glued blocks
(bottom).

in Figure 4.1). Following this scheme, we find that

9∑
i=1

9∑
j=1

ηij = 9η11 + 2 [8η12 + 1× 2(η34 − η12)] + 2 [7η13 + 2× 2(η35 − η13)] +

2 [6η14 + 0× 2(η36 − η14)] + 2 [5η15 + 1× 1(η37 − η15)] + 2 [4η16 + 2× 1(η38 − η16)] +

2 [3η17 + 0× 0(η39 − η17)] + 2 [2η18 + 1× 0(η3,10 − η18)] + 2 [1η19 + 2× 0(η3,11 − η19)] .

Note that η3,10 and η3,11 do not exist; however, these values have been written in the previous
formula to illustrate the generic expression. In the final equation, these values are multiplied by
zero.

In general, we consider a rectangular grid of size n = n1 × n2 such that nk is divided into mk

segments of equal length for k = 1, 2. Hence, the grid is split into m = m1×m2 equal blocks. Each
block has size |bi| = n/m. Again, by summing across the diagonals of η, we obtain

m∑
i=1

ηii = mη11,

m∑
i=1

m∑
j=1

ηij = mη11 + 2

m−1∑
i=1

m∑
j=i+1

ηij

= mη11 + 2

m−1∑
i=1

{
η1,1+i(m− i) + (i mod m1)

(
m2 −

⌈ i

m1

⌉)
(ηm1,m1+i − η1,1+i)

}
,

where mod is the modulus function and d·e is the ceiling function.
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The direct computation of the elements of η has an order of computation of m2, while the com-
putation across the diagonals has order m, so the computational time is considerably reduced in
practice.

5. Examples

In this section, the ESS and ESSB are compared for different correlation structures. We focus on
the intraclass and AR(1) correlation matrices, which are described in the previous sections, as well
as on the Matérn and simultaneous autoregressive correlation models, which are widely used in the
spatial statistics literature.

5.1. Example 1: Intraclass Correlation

Consider the intraclass correlation matrix R(ρ) introduced in Equation (2.2). Each block has an
intraclass correlation matrix of the form

Rbi(ρ) = (1− ρ)I|bi| + ρ1|bi|1
>
|bi|,

and the cross-correlation matrix between distinct blocks is Rbibj (ρ) = ρ1|bi|1
>
|bj |. Using Equation

(2.3), one has

ηii =
|bi|

1 + (|bi| − 1)ρ
.

Additionally, a straightforward calculation shows that

ηij = ρηiiηjj =
ρ|bi||bj |

{1 + (|bi| − 1)ρ}{1 + (|bj | − 1)ρ}
.

In particular, when all blocks have the same size, that is, |bi| = n/m, we find that ESSB = ESS.
Precisely, notice that

ηii =
n/m

1 + (n/m− 1)ρ
and ηij = ρ

(
n/m

1 + (n/m− 1)ρ

)2

.

Then,

ESSB =
m2
(

n/m
1+(n/m−1)ρ

)2
m
(

n/m
1+(n/m−1)ρ

)
+m(m− 1)ρ

(
n/m

1+(n/m−1)ρ

)2
=

m
(

n/m
1+(n/m−1)ρ

)
1 + (m− 1)ρ

(
n/m

1+(n/m−1)ρ

)
=

n
1+(n/m−1)ρ
1+(n−1)ρ

1+(n/m−1)ρ

=
n

1 + (n− 1)ρ

= ESS .

It is straightforward to show that the mapping t 7→ t/(1 + (t − 1)ρ) has a positive first-order
derivative on the positive real line for any ρ < 1. Thus, ESSB and ESS are increasing with n.
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Figure 5.1: ESSB and the ESS versus 0 < ρ < 1 in the AR(1) model for n = 40, 100. For ESSB , two different
block partitions are considered: ∆1 (two blocks of size n/2) and ∆2 (ten blocks of size n/10).

5.2. Example 2: AR(1) Correlation

For the AR(1) correlation structure in Equation (2.4), the observations are split into m blocks of
size n/m, i.e., b1 = {1, . . . , n/m}, b2 = {n/m + 1, . . . , 2n/m}, . . . , bm = {(m − 1)n/m + 1, . . . , n}.
According to Equation (2.5), we have that

ηii =
2 + (n/m− 2)(1− ρ)

1 + ρ
.

To obtain ηij , note that the (k, r)th entry of the matrix Rbibj (ρ) for i 6= j is given by

[Rbibj (ρ)]k,r = ρ|n/m(i−j)+k−r|,

where k, r = 1, . . . , n/m. In Figure 5.1, plots are shown for ESSB and the ESS versus ρ for the
AR(1) structure and for 0 < ρ < 1, n = 40 and n = 100. For ESSB, two block configurations
are considered: ∆1 (two blocks of size n/2) and ∆2 (ten blocks of size n/10). From Figure 5.1, it
is observed that in all cases, the curves are very similar, regardless of the number of blocks used.
When n = 40, the maximum discrepancies between the ESS and ESSB(∆1) and between the ESS
and ESSB(∆2) are 0.39 and 0.45, respectively. However, when n = 100, these values are 0.54 and
1.40, respectively. The sample size reduction percentages produced by the ESS and ESSB relative
to n are essentially the same (the differences between these percentages are approximately 1%).
Thus, ESSB provides a good approximation of the ESS under the AR(1) model.

Figure 5.2 shows ESSB versus n = 16k with k = 1, . . . , 10, for different values of ρ. For each value
of n, ESSB is implemented with two blocks of size n/2. As expected, an increasing trend can be
observed. Although it seems that ESSB grows linearly, the increments are not constant. These
experiments are repeated with additional block configurations, where they obtain quite similar
results; thus, they are not reported here.
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Figure 5.2: ESSB versus n = 16k with k = 1, . . . , 10 for the AR(1) model with ρ = 0.1, 0.3, 0.5, 0.7, 0.9. For
each value of n, ESSB is considered with two blocks of size n/2.

5.3. Example 3: Matérn Correlation on a Plane

We consider random fields {Z(s) : s ∈ R2} with a Matérn-type covariance function (see, e.g., Stein,
2012), i.e.,

cov{Z(s1), Z(s2)} =
21−ν

Γ(ν)

(
h

φ

)ν
Kν

(
h

φ

)
, (5.1)

where h = ‖s1 − s2‖, Kν is the modified Bessel function of the second kind and Γ is the gamma
function (Abramowitz and Stegun, 1972). Here, φ > 0 is a parameter that controls the (practical)
range of the random field, that is, the distance h∗ such that (5.1) is less than or equal to 0.05 for
all h ≥ h∗. The parameter ν > 0 regulates the differentiability (in a mean square sense) of the
random field. Specifically, the random field is k-times mean square differentiable if and only if
ν > k (see Stein, 2012 for details). We focus on the following special cases:

• Matérn model with ν = 1/2, which corresponds to an exponential structure:

h 7→ exp

(
−h
φ

)
. (5.2)

A random field with this covariance function is mean square continuous but nondifferentiable.
As a result, the exponential model (5.2) is associated with random fields with rough sample
paths.

• Matérn model with ν = 3/2, which corresponds to the product between an exponential
structure and a polynomial of degree one:

h 7→
(

1 +
h

φ

)
exp

(
−h
φ

)
. (5.3)

This model generates once mean square differentiable random fields. In comparison with the
exponential model, (5.3) produces random fields with smoother sample paths.

To study the discrepancy between ESSB and ESS, the covariance structures defined in Equations
(5.2) and (5.3) are considered for certain fixed sets of parameters. In all cases, a grid of the form
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{1, . . . , n1} × {1, . . . , n2} is considered, where n1 and n2 vary from 8 to 64. φ is chosen in such a
way that both models have the same range. Three different values for the range are considered:
3, 9 and 16. For simplicity, in the computation of ESSB, the subdivision of the domain considers
the same number of points in each block, and the points within each block are selected as close
together as possible using the Euclidean distance measure (Hartigan and Wong, 1979).

The values of ESSB are depicted in Figures 5.3 and 5.4, including the traditional ESS and ESSG,
which are obtained from the limit partitions. It is observed that the results are in agreement with
the inequalities stated in Proposition 3.1. We also observe that ESSB does not necessarily belong
to the interval [ESSG,ESS]. In percentage terms, the difference between the sample size reductions
produced by the ESS and ESSB with respect to n never exceeds 2% for every combination of block
partition, sample size, and range.

Figure 5.5 reports ESSB versus n = 4k × 2k with k = 1, . . . , 10 for the exponential correlation
structure (5.2) and for different values of the range: 3, 9, and 16. In this example, ESSB is
implemented with two blocks of size n/2. An increasing trend is apparent. Similar studies are
carried out for additional parametric families of covariance functions, such as the spherical model.
Since similar results are obtained, they are omitted for the sake of brevity.

5.4. Example 4: Simultaneous Autoregressive Models on a Plane

Let X be a vector with entries Xi = X(si) for si ∈ R2 and i = 1, . . . , n, as described in Section 2.
Assume that X has a simultaneous autoregressive (SAR) structure with zero mean, that is,

X = BX + ε, (5.4)

where ε is a Gaussian random vector with zero mean and covariance matrix σ2In. Here, B = ρW ,
with W standing for a row-standardized contiguity matrix and 0 < ρ < 1 (Cressie, 1993). In
other words, the (i, j)th entry of W is different from zero if and only if sites i and j are neighbors;
otherwise, it is identically equal to 0. Consequently, the matrix W characterizes the association
between the spatially indexed random variables, as it induces a dependency structure between
neighbors, whereas ρ is a parameter that controls the degree of spatial autocorrelation. Recent
interesting research about this model can be found in Ver Hoef et al. (2018), where several appealing
attributes of SAR models are reviewed together with their importance in areas as diverse as disease
mapping, econometrics and image analysis, as well as in Griffith (2015), where efficient algorithms
and approximation techniques are proposed.

The definition of ESSB can be directly used for this parametric model by noticing that the co-
variance matrix of X is given by σ2[(In − ρW )>(In − ρW )]−1. Of course, this strategy is not
recommended for extremely large datasets. Hence, we now describe some procedures that allow us
to obtain ESSB efficiently. Let Wbibj be the row-standardized contiguity matrix between blocks bi
and bj (note that if blocks bi and bj are not adjacent, then Wbibj is the zero matrix). We define

Vij = (I|bi|+|bj | − ρW̃bibj )
>(I|bi|+|bj | − ρW̃bibj ), such that the covariance matrix of (Xbi ,Xbj )

> is

σ2V −1ij , where

W̃bibj =

(
Wbibi Wbibj

Wbjbi Wbjbj

)
.

In addition, consider the partitions

Vij =

(
A11
ij A12

ij

A21
ij A22

ij

)
and V −1ij =

(
G11
ij G12

ij

G21
ij G22

ij

)
,
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Figure 5.3: ESSB (green circles) versus the number of blocks for the covariance model (5.2) and for different
sample sizes (16 × 8 = 128, 32 × 16 = 512, and 64 × 32 = 2048) and ranges (3, 9, and 16). The red and blue
dashed lines represent the ESS and ESSG, respectively.
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Figure 5.4: ESSB (green circles) versus the number of blocks for the covariance model (5.3) and for different
sample sizes (16 × 8 = 128, 32 × 16 = 512, and 64 × 32 = 2048) and ranges (3, 9, and 16). The red and blue
dashed lines represent the ESS and ESSG, respectively.

Figure 5.5: ESSB versus n = 4k×2k, with k = 1, . . . , 10, for the exponential model (5.2) with range = 3, 9, 16.
For each value of n, we have considered ESSB with two blocks of size n/2.
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Figure 5.6: ESSB (green circles) versus the number of blocks for the SAR model, for different sample sizes
(16 × 8 = 128, 32 × 16 = 512, and 64 × 32 = 2048) and different values of ρ (0.1, 0.5, and 0.9). The red and
blue dashed lines represent the ESS and ESSG, respectively.
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and the diagonal matrix Cbibj = diag
{
V −1ij

}1/2
= (C(i),C(j)). Thus, R−1bi = C(i)A

11
ijC(i), R

−1
bj

=

C(j)A
22
ijC(j), and Rbibj = C−1(i)G

12
ijC

−1
(j) . Therefore

ηij = 1>|bi|C(i)A
11
ijG

12
ijA

22
ijC(j)1|bj |, (5.5)

ηii = 1>|bi|C(i)A
11
ijC(i)1|bi|. (5.6)

If blocks bi and bj are not adjacent, then ηij = 0. Moreover, if the m = m1 × m2 blocks are
identical, as discussed in Section 4, then, ESSB simplifies to

ESSB =
(mη11)

2

mη11 + 2[(m1 − 1)m2 + (m2 − 1)m1]η12
. (5.7)

In Figure 5.6, the behavior of ESSB is explored in terms of the number of blocks for different
combinations of sample sizes and values of ρ. The ESS and ESSG, which are the limit cases of
our proposal, are similar in each scenario. The sample size reduction produced by ESSB is similar
to that produced by the ESS and ESSG (the worst discrepancies, relative to n, are approximately
10%, but in most cases, they are much less than this percentage).

6. Simulation Study

6.1. Maximum Likelihood Versus Block Likelihood Estimation

The goal of this section is to compare the relative performances of the block likelihood (BL) and
maximum likelihood (ML) estimation methods. We focus on the estimation of the range parameter
of the covariance function because it is the aspect that most influences the assessment of the effective
sample size. All computations described below were performed using a computer equipped with a
2.7 GHz processor and 8 GB of RAM.

In pursuance of running the experiments, lattices in R2 of sizes 16 × 8 = 128, 32 × 16 = 512,
and 48 × 32 = 1152 were considered. These lattices were chosen to keep the computation of the
full likelihood feasible. The Matérn-type correlation models detailed in Equations (5.2) and (5.3)
were used with different ranges (3, 9, and 16). For each combination of correlation model, range,
and lattice, 1000 independent random fields with zero mean and unit variance were simulated, and
then the corresponding ML and BL estimates of the range were obtained. The BL method was
implemented with three different block configurations: ∆1 (two identical blocks), ∆2 (four identical
blocks), and ∆3 (eight identical blocks), in a similar fashion to the examples illustrated in Section
5.3.

Figure 6.1 displays the boxplots of the range estimates for models (5.2) and (5.3). In each case,
the estimations obtained by both methods appear unbiased, and it is also observed that an in-
crease in the number of blocks leads to an increase in the variability of the BL estimates. When
n = 128, many atypical BL estimates are observed for configuration ∆3. This is not surpris-
ing because in this case, each block only contains 16 observations. Each estimation method
shows less pronounced variability as the sample size increases. Table 6.1 summarizes the rela-
tive root mean squared errors (rRMSEs) of the ML estimates with respect to the BL estimates,
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Table 6.1: Relative root mean squared errors (rRMSEs) between the ML and BL estimates based on 1000
independent realizations. We considered models (5.2) and (5.3), different samples sizes (16×8 = 128, 32×16 =
512, and 48 × 24 = 1152) and different ranges (3, 9, and 16). The BL method was implemented with three
different block configurations: ∆1 (two identical blocks), ∆2 (four identical blocks), and ∆3 (eight identical
blocks).

Range = 3 Range = 9 Range = 16
∆1 ∆2 ∆3 ∆1 ∆2 ∆3 ∆1 ∆2 ∆3

Model (5.2) n = 128 0.68 0.44 0.22 0.68 0.46 0.24 0.68 0.46 0.24
n = 512 0.71 0.48 0.33 0.72 0.51 0.35 0.72 0.51 0.36
n = 1152 0.70 0.49 0.34 0.70 0.50 0.35 0.70 0.50 0.35

Model (5.3) n = 128 0.71 0.46 0.28 0.70 0.47 0.28 0.70 0.46 0.28
n = 512 0.70 0.49 0.34 0.72 0.51 0.35 0.72 0.51 0.35
n = 1152 0.70 0.49 0.35 0.70 0.50 0.36 0.70 0.51 0.36

i.e., rRMSE = RMSE(φ̂ML)/RMSE(φ̂BL). For a given partition, the rRMSE does not vary remark-
ably across all combinations of sample sizes and ranges. The BL estimates based on ∆1 always
outperform the other BL alternatives.

Examining the behaviors of the different models, it is observed that for the Matérn model with
ν = 1.5, all methods provide more accurate estimates, which is consistent with previous findings
related to composite likelihood inference (Bevilacqua and Gaetan, 2015). Thus, the estimations
seem to be more precise for smoother random fields.

We now turn to a comparison of the computational time required for evaluating the objective
functions associated with each estimation method. To accomplish this, lattices of sizes n = 16k×8k
for k = 1, . . . , 16 were considered. Figure 6.2 reports the evaluation times (in seconds) for the ML
and BL methods in terms of the sample size. The computational benefits are clear for the BL
method. The computational burden of the ML rapidly increased for a few thousands observations.

For regularly spaced data, a convenient implementation of BL requires the consideration of all
blocks with identical configurations. In such a case, the correlation matrix is the same for each
block; hence, the only quantity that remains to be evaluated in each iteration of the maximization
process is the inverse of one correlation matrix. As a result, the order of computation is (n/m)3.

6.2. ÊSS Versus ÊSSB

We now investigate how the variabilities of the ML and BL estimates affect the variabilities of
ÊSS = ESS(φ̂ML) and ÊSSB = ESSB(φ̂BL). To measure the absolute difference between the

sample size reduction percentages generated by The ÊSS and ÊSSB relative to n, the quantity

1

n

∣∣∣ÊSS− ÊSSB

∣∣∣ , (6.1)

is analyzed. We evaluate (6.1) for the different scenarios described in the previous subsection.

Figure 6.3 displays the results obtained for both correlation models. The largest discrepancies
occur in those cases where the range is 3; however, the median difference never exceeds 10%. The
variability of (6.1) is considerable for the third block configuration when n = 128 and n = 512.
Again, this pattern is expected because for small sample sizes, the third block partition generates
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Figure 6.1: ML and BL estimates of the range based on 1000 independent realizations. We considered models
(5.2) and (5.3) and different sample sizes (16 × 8 = 128, 32 × 16 = 512, and 48 × 24 = 1152) and ranges (3, 9,
and 16). The BL method was implemented with three different block configurations: ∆1 (two identical blocks),
∆2 (four identical blocks), and ∆3 (eight identical blocks).
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Figure 6.2: Time (in seconds) versus sample size when evaluating the objective functions of the ML and BL
methods. The BL method was implemented with three different block configurations: ∆1 (two identical blocks),
∆2 (four identical blocks), and ∆3 (eight identical blocks).

quite small blocks. In the scenarios where the range is 9 or 16, ÊSSB exhibits robust behavior, even
for the third block configuration. As the sample size increases, the sample size reduction tends to
be the same for all estimation methods. For example, when n = 1152, the maximum discrepancy
is approximately 1.5% when the range is 9 and approximately 0.6% when the range is 16. The
variability of (6.1) is less prominent for model (5.3).

7. Data Analysis

We illustrate the use of the block likelihood approach developed in Section 3 on a forest dataset,
which consists of a three-band reference image of size 5616 × 3744 pixels and thus represents
a dataset with a large sample size (n = 21026304). The image is shown in Figure 7.1, and it
was taken above a section of forest at the Harvard Forest, Petersham, MA, USA. The image
belongs to one of the comprehensive databases that are part of a long study carried out in Har-
vard Forest. The image and code for handling it in R are available from https://github.com/

JAcostaS/Code-and-Example-Codismap.git. To apply our methodology, the reference image has
been transformed to a grayscale image.

Computational Cost of the ESS. : For this image, it is infeasible to obtain the traditional ESS
because it is not possible to obtain the pixel distance matrix. When trying to calculate the distance
matrix, the software R indicates that it “cannot locate a size vector 1646971.1 GB” because such
a large amount of memory is not available. In other words, a RAM size of 1608.37 TB is needed to
be able to perform the calculation of the distance matrix, which is a necessary step for obtaining
the correlation matrix. In addition, even more RAM is needed for parameter estimation. Even
if such an amount of RAM were available, processing would be too slow because the inverse of
the correlation matrix needs to be evaluated during the estimation process as well as in the ESS
calculation.

The ESSB introduced in this paper is computed for the abovementioned large dataset. First, for
324 blocks of size 312 × 208, the local empirical variograms are estimated (see Figure 7.2). The
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Figure 6.3: Absolute difference between the sample size reduction percentages generated by the ÊSS and ÊSSB

relative to n. We consider models (5.2) and (5.3), different sample sizes (16 × 8 = 128, 32 × 16 = 512, and
48 × 24 = 1152) and different ranges (3, 9, and 16). The BL method is implemented with three different block
configurations: ∆1 (two identical blocks), ∆2 (four identical blocks), and ∆3 (eight identical blocks).
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Figure 7.1: Reference image of size 5616 × 3744 pixels taken above a section of forest at the Harvard Forest,
Petersham, MA, USA.

blue violet line represents the average across the 324 empirical variograms, and this gives us an
idea of what the global empirical variogram looks like. Then, Matérn covariance models are fitted
to this dataset by means of the block-likelihood estimation method. σ2 and φ are estimated for
different fixed values of ν. The red, green, blue and sky blue lines in Figure 7.2 correspond to the
BL fits for ν = 0.5, ν = 1.0, ν = 1.5 and ν = 2.0, respectively. We consider three configurations in
the block-likelihood estimation process: ∆1: 54756 blocks of size 24× 16, ∆2: 10816 blocks of size
54× 36, and ∆3: 1521 blocks of size 144× 96 (the results are displayed in Table 7.1). The involved
distances never exceed 27.46, 63.51 and 171.68 for configurations ∆1, ∆2 and ∆3, respectively. It is
observed from Figure 7.2 that the practical range is approximately 50, which means that choosing
blocks whose diagonals are greater than 50 ensures reasonable variogram estimates. Table 7.1
reports the respective ESSB estimates for the Matérn models mentioned above. When ν = 0.5,
the estimates of σ2 are very unsatisfactory, as shown in Figure 7.2. For the cases in which ν = 1.0,
ν = 1.5 and ν = 2.0, the estimations are highly stable across different configurations. Note that
ÊSSB varies drastically among the covariance models.

We turn to a comparison between the full image and some subsamples. The estimated ESSB for
ν = 1.0 and ν = 1.5 are used to choose the sizes of these subsamples. We expect the subsamples
to capture the essential statistical information of the original image. The sizes of the subsamples
are selected in such a way that the proportion between rows and columns of 3:2 is preserved.
Specifically, the sample sizes are 27×18 = 486, 33×22 = 726, 120×80 = 9600 and 129×86 = 11094.
For each subsample, two types of sampling schemes are considered: random and regular. It is worth
mentioning that the sampling process is performed on the entire image, i.e., there is no specific
treatment within each block. In particular, in the random sampling scheme, a subsample of pixels
is selected from the entire image through uniform sampling along the rows and columns (e.g., to
obtain a subsample of size 486, we sample 27 columns and 18 rows out of the 5616 columns and
3744 rows of the entire image, respectively). Table 7.2 contains descriptive statistics for the original
and subsample images. The mean and standard deviation are successfully reproduced regardless of
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Figure 7.2: Estimated empirical variograms for the 324 selected blocks (black points). The blue violet line
represents the average across the 324 estimations, while the red, green, blue, and sky blue lines represent the
BL fits for ν = 0.5, ν = 1.0, ν = 1.5 and ν = 2.0, respectively. The different types of lines represent different
block configurations: plane for ∆1, segment for ∆2 and dotted line for ∆3.

Table 7.1: BL and ESSB estimates for different block configurations.

Model Block Size
Number of

σ̂2 φ̂
Estimated

ÊSSBBlocks Range

ν = 0.5
24× 16 54756 0.0007 28.868 86.48 4051
54× 36 10816 0.0006 58.010 173.78 1018
144× 96 1521 0.0016 265.491 795.34 111

ν = 1.0
24× 16 54756 0.0275 60.678 242.62 474
54× 36 10816 0.0240 58.384 233.45 510
144× 96 1521 0.0175 46.601 186.33 765

ν = 1.5
24× 16 54756 0.0141 9.959 47.21 11206
54× 36 10816 0.0138 9.961 47.22 10522
144× 96 1521 0.0156 9.944 47.13 9315

ν = 2.0
24× 16 54756 0.0126 4.436 23.82 40538
54× 36 10816 0.0108 4.262 22.88 38503
144× 96 1521 0.0087 3.890 20.88 46238
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the sampling scheme used, and these statistics improve as the sample size increases. In addition,
it is observed that under a regular sampling scheme, the percentiles are also accurately estimated.
Although the minimum and maximum values are reasonably approximated, they present a more
significant imprecision.

Table 7.2: Summary statistics for the original data and the subsamples. The subsamples are obtained using
random and regular sampling schemes.

Original Random Sampling Regular Sampling
Statistics Image 486 726 9600 11094 486 726 9600 11094

Min. 0.0039 0.0458 0.0431 0.0157 0.0275 0.0431 0.0314 0.0118 0.0118
25%. 0.1281 0.1281 0.1350 0.1242 0.1294 0.1232 0.1333 0.1281 0.1281
50%. 0.1987 0.1954 0.1974 0.1908 0.1987 0.1908 0.2098 0.1987 0.1987
75%. 0.3098 0.3196 0.3134 0.3059 0.3072 0.2967 0.3134 0.3111 0.3098
Max. 0.8379 0.5386 0.5464 0.6719 0.6771 0.5320 0.5686 0.6261 0.6562
Mean 0.2245 0.2257 0.2278 0.2196 0.2243 0.2188 0.2279 0.2242 0.2243
s.d. 0.1150 0.1204 0.1147 0.1152 0.1141 0.1147 0.1126 0.1150 0.1150

Figure 7.3 shows the marginal empirical distribution functions for the original image (green line)
and for the subsamples (red dashed lines for the random sampling scheme and black dotted lines
for the regular scheme). The behaviors of both sampling schemes are very similar and impossible
to distinguish for large sample sizes. Table 7.3 displays some quality measures, such as the bias,
standard deviation and maximum difference between the original and subsample images. We
observe substantial improvements in these measures when the sample size increases from 726 to
9600. To reinforce our results, the last column of Table 7.3 shows the p-values of the two-sample
Kolmogorov-Smirnov test.

Table 7.3: Summary statistics for the differences between the empirical distributions of the original data and
the subsamples. The p-values correspond to the two-sample Kolmogorov-Smirnov test.

Sampling Size Mean Standard Deviation Maximum Difference p-value

Random

486 0.0012 0.0096 0.0319 0.3711
726 0.0033 0.0081 0.0379 0.3871
9600 -0.0003 0.0023 0.0079 0.2452
11094 -0.0049 0.0073 0.0004 0.1861

Regular

486 0.0034 0.0094 0.0371 0.6605
726 -0.0057 0.0089 0.0095 0.5078
9600 -0.0003 0.0013 0.0023 0.3505
11094 0.0058 0.0029 0.0093 0.7158

We also employ the SAR model to perform additional analysis regarding this dataset. For a clearer
exposition, these results are available in Appendix B.

8. Discussion

This paper introduced a new way to address the computation of the effective sample size. The
methodology is based on block likelihood inference. We showed that ESSB preserves some relevant
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Figure 7.3: Empirical distributions of the original data and the subsamples: (top left) subsample of size 486,
(top right) subsample of size 726, (bottom left) subsample of size 9600, and (bottom right) subsample of size
11094.

attributes of the traditional ESS. The approach, equipped with powerful computational machinery,
is appropriate for large spatial datasets and reduces to the original ESS when the number of blocks
is equal to one. The use of our findings has been illustrated with a real forest dataset. Once
ESSB was determined, we showed that subsamples of such a size preserve the main properties of
the original image, thereby illustrating the effectiveness of our proposal. Not only is the effective
sample size a relevant feature when planning a sampling design, but how to choose such locations
in an optimal way is also a crucial problem that deserves special attention. Several alternatives
related to this task have been discussed in past studies, including random, systematic (regular),
and stratified schemes, as well as hybrid strategies (see, e.g., Griffith, 2008 and Li et al., 2016).

Although Monte Carlo simulations and applications were developed and illustrated for spatial
datasets defined on regular grids in this paper, our methodology may be applied for sample size
reduction with irregularly spaced spatial data. In addition, we focused on spatial random fields
with a constant mean, so the extension of this approach to general spatial regression models is a
natural research topic that we expect to tackle in further research, along the lines of Acosta and
Vallejos (2018). Another promising research direction is the formulation of alternative sample size
reduction techniques based on different estimating equations (see, e.g., Bevilacqua and Gaetan,
2015; Sun et al., 2018; Bachoc et al., 2019; Litvinenko et al., 2019). Here, the derivation of an
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amenable expression for the Godambe information could be challenging. Generalizations to non-
Gaussian random fields could be useful for analyzing data in the presence of asymmetry or heavy
tails (Xu and Genton, 2015, 2017).
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Appendices

A. Proof of Proposition 3.1

We now proceed with a point-to-point proof of Proposition 3.1.

(1) Suppose that all the observations are independent. It follows that Rbi(θ) = I|bi| for all
i = 1, . . . ,m and thatRbibj (θ) is identically equal to the matrix of zeros of dimension |bi|×|bj |
for all i 6= j. As a result, ηii = |bi| and ηij = 0; hence, ESSB = |b1|+ · · ·+ |bm| = n.

(2) Suppose now that all the observations are perfectly correlated. Then, Rbibj (θ) = 1|bi|1
>
|bj |

for all i, j = 1, . . . ,m. Furthermore, the pseudoinverse of Rbi(θ) is given by R+
bi

(θ) =

1|bi|1
>
|bi|/|bi|

2. Thus, it is straightforward to see that ηii = ηij = 1 for all i, j = 1, . . . ,m.
Consequently, ESSB = 1.

(3) The inequality ESSB ≤ ESS is true because the Fisher information is always greater than
the Godambe information (Godambi and Kale, 1991, pp. 3-20). The goal now is to prove
that ESSB ≥ 1. Note that ESSB can be written as

ESSB =
tr(η)2

1>mη1m
,

where η is an m × m matrix with elements ηij as in (3.7). Additionally, note that η is
nonnegative definite since it has a representation of the form

η = E
{
LL>

}
,

where L = (∂`b1/∂µ, . . . , ∂`bm/∂µ)> ∈ Rm. Observe that |ηij | ≤
√
ηiiηjj for all i, j =

1, . . . ,m, so we have that

1>mη1m =
m∑

i,j=1

ηij ≤
m∑

i,j=1

√
ηii
√
ηjj =

(
m∑
i=1

√
ηii

)2

.

Using Jensen’s inequality in the last expression, one obtains that

1>mη1m ≤ m
m∑
i=1

ηii = m tr(η).
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Finally, we recall that ηii is the traditional ESS of the ith block; thus, ηii ≥ 1 (see Vallejos
and Osorio, 2014), and of course, tr(η) ≥ m. Thus,

1>mη1m ≤ tr(η)2,

and the result follows.

(4) When m = 1, we only have a single block of length |b1| = n. Thus,

ESSB = η11 = 1>nR
−1(θ)1n = ESS .

(5) When m = n, the length of each block is |bi| = 1 for i = 1, . . . ,m. The matrices involved
in Definition 3.1 are given by Rbi(θ) = 1 and Rbibj (θ) = rij , where rij denotes the (i, j)th
element of R(θ). Therefore, ηij = rij and ηii = 1. Thus,

ESSB =
n2∑n

j=1

∑n
i=1 rij

=
n2

1>nR(θ)1n
.

B. Numerical Experiments with the SAR Model

B.1. ML versus BL in the SAR Model

In addition to the experiments conducted in Section 6.1 related to the Matérn family, we also com-
pare the statistical performances of the ML and BL estimates when an SAR model, as in Equation
(5.4), is assumed. This study allows us to have a more complete idea about the performance of
the BL estimation method.

We focus on the estimation of ρ, which fully characterizes the different notions of the effective
sample size. Here, σ2 = 1 is fixed. A lattice in R2 of size 32× 16 = 512 and three different values
of ρ (0.1, 0.5, and 0.9) are considered. For each case, we simulate 1000 independent realizations,
and then the ML and BL estimates of ρ are obtained. The BL method is implemented with three
different block configurations: ∆1 (two identical blocks), ∆2 (four identical blocks), and ∆3 (eight
identical blocks). Figure B.1 shows the corresponding boxplots. We perceive that both methods
have similar levels of variability when an SAR intrinsic structure is present. This is different from
previous experiments performed with the Matérn model, where there was a decrease in the quality
of the estimates as the number of blocks increased.

This brief simulation example indicates that the BL estimation approach is particularly compatible
with the SAR model. The results reported here are not surprising, as we are aware that even
small blocks contain key information about neighboring sites (the only information lost occurs
at the border that separates neighboring blocks), so the BL method is extremely competitive for
estimating ρ.

B.2. SAR Analysis of the Forest Dataset

We look at the ESSB estimates for the forest dataset analyzed in Section 7 when the observations are
assumed to have an SAR structure. Table B.1 shows the parameter estimates obtained through the
BL method with different block configurations, together with the corresponding ESSB estimates.
Note that the ESSG estimates are also reported, and these are based on the approximation given
in Equation (3) of Griffith (2005).
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Figure B.1: ML and BL estimates of ρ based on 1000 independent realizations for the SAR model. The sample
size used is 32×16 = 512. We consider three scenarios for ρ (0.1, 0.5, and 0.9). The BL method is implemented
with three different block configurations: ∆1 (two identical blocks), ∆2 (four identical blocks), and ∆3 (eight
identical blocks).

We observe that the estimates of ρ are close to 1, indicating a high spatial association, which is
consistent with similar studies reported by Griffith (2005) in the context of remotely sensed data.
The obtained results tell us that the reduction of the sample size can be considerable when we
work with this type of image. In this specific case, less than 1% of the pixels of the original image
contain the essential statistical information about this dataset.

Table B.1: BL and ESSB estimates for different block configurations under the SAR model. The ESSG estimates
are also reported.

Block Size Number of Blocks σ̂2 ρ̂ ÊSSG ÊSSB

24 × 16 54756 0.00016 0.94782 401107 72370
54 × 36 10816 0.00009 0.99686 23642 4968
144 × 96 1521 0.00007 0.99890 8761 1000
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