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The concordance correlation coefficient (CCC) and the probability of agreement (PA) are two frequently
used measures for evaluating the degree of agreement between measurements generated by two different
methods. In this paper, we consider the CCC and the PA using the bivariate normal distribution for modeling
the observations obtained by two measurement methods. The main aim of this paper is to develop diagnostic
tools for the detection of those observations that are influential on the maximum likelihood estimators of
the CCC and the PA using the local influence methodology but not based on the likelihood displacement.
Thus, we derive first- and second-order measures considering the case-weight perturbation scheme. The
proposed methodology is illustrated through a Monte Carlo simulation study and using a dataset from a
clinical study on transient sleep disorder. Empirical results suggest that under certain circumstances first-
order local influence measures may be more powerful than second-order measures for the detection of
influential observations.

Key words: Concordance correlation coefficient; First- and second-order approaches; normal and
conformal curvatures; Probability of agreement

1 Introduction

To assess the degree of agreement between measurements obtained from two measurement instruments (or
methods), Lin (1989) proposed a scaled index called the concordance correlation coefficient. This coef-
ficient has been constructed to quantify the proximity of the measurements generated by the instruments
to the 45◦ line passing through the origin, also known as the concordance line. The coefficient can be
decomposed into two main components, the first quantifying how far each observation moves from the
line that represents the best fit to the data (precision) and the second measuring how far this fitted line
deviates from the 45◦ line (accuracy). The need to measure the agreement between measurement instru-
ments frequently arises in several areas of knowledge; see for instance Carstensen (2010), Lin et al. (2011)
and Choudhary and Nagaraja (2017). Recent works proposing a version of the CCC to manipulate several
measuring instruments as well as a technique to evaluate the agreement between two instruments that leads
to an interesting graphic tool are described by Hiriote and Chinchilli (2011) and Stevens et al. (2017),
respectively. We can use other measures of agreement. In this paper we consider also the probability of
agreement, suggested by Stevens et al. (2017) and Choudhary and Nagaraja (2017).

Cook (1986) proposed a general diagnostic procedure to study the sensitivity of certain statistics of
interest when minor perturbations to model assumptions and/or data are introduced on the postulated sta-
tistical model through the evaluation of the local behavior of some influence measure. In particular, Cook
(1986) suggested assessing the effect of a particular perturbation scheme by investigating the behavior of
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the surface generated by the likelihood displacement. However, we are frequently interested in the de-
tection of potentially influential observations on a function of the maximum likelihood (ML) estimator.
First-order local influence approaches applied to objective functions other than the likelihood displace-
ment have been proposed, for instance, by Lawrance (1988), Thomas and Cook (1990) and Cadigan and
Farrel (2002). Some authors have warned about the use of these procedures. For instance, Wu and Luo
(1993) emphasized that first-order local influence does not always provide information on those obser-
vations that strongly influence objective functions defined as functions of the ML estimator. Moreover,
Fung and Kwan (1997) showed that the normal curvature is not well defined for objective functions with
non-zero first derivatives at the critical point, which can lead to misleading interpretations about the role of
influential observations. To prevent these adverse effects, Zhu et al. (2007) proposed influence measures
applicable to any differentiable objective function, regardless of whether its first derivative at the critical
point is zero. They called these procedures first- and second-order approaches. The methodology has been
applied by several authors. For example, Chen et al. (2009) developed the second-order local influence for
nonlinear structural equation models, whereas Shi et al. (2009) studied the selection of appropriate pertur-
bation schemes and proposed several first-order influence measures. Recently, Giménez and Galea (2013)
and Galea and Giménez (2016) discussed the application of second-order approaches to assessing local
influence in functional heteroscedastic measurement error models and the test of mean-variance efficiency
in the capital asset pricing model, respectively. The application of this methodology to CCC and PA has
not been previously considered in the literature.

The paper is organized as follows. In Section 2, we review the concordance correlation coefficient and
the probability of agreement and introduce a dataset from a clinical study that will serve as a motivating
example. Section 3 is dedicated to the development of the local influence for the CCC and the proba-
bility of agreement considering both first- and second-order measures under the case-weight perturbation
scheme. Numerical experiments, based on a simulation study and the analysis of the motivating example,
are presented in Sections 4 and 5, respectively. Finally, Section 6 gives some concluding remarks.

2 Some agreement measures

Let us assume a random sample (X11, X12), . . . , (Xn1, Xn2) from a bivariate population with mean vector
µ and covariance matrix Σ. Then, a method to quantify the degree of agreement between the variables X1

and X2 corresponds to the CCC (Lin, 1989), which is defined as

ρc =
2σ12

σ11 + σ22 + (µ1 − µ2)2
, (1)

where µj and σjj are the mean and variance of the measurements obtained by the jth method or instru-
ment of measurement, respectively (j = 1, 2), and σ12 is the covariance between the measurements from
methods 1 and 2. It is easy to see that the CCC can be written as a function of the precision and accuracy
coefficients. Indeed, ρc = ρ12C12, where ρ12 shows how far each observation deviates from the best-fit
line and C12 = 2(b + b−1 + a2)−1 is a correction factor that measures how far the best-fit line deviates
from the 45◦ line, in which b = (σ11/σ22)1/2 and a = (µ1 − µ2)/(σ11σ22)1/4. Moreover, it is possible to
show that the CCC is between−1 and 1, and a higher absolute value indicates a greater agreement between
the measurements. Let Di = Xi1 − Xi2 for i = 1, . . . , n, be the differences between the measurements
obtained by the two instruments. Therefore, in order to quantify the degree of agreement between two
systems of measurement Stevens et al. (2017) introduced the probability of agreement defined as

ψc = P(|Di| ≤ c), c > 0,

where CAD = (−c, c) represents a clinically acceptable difference. In addition, we are assuming that
the observations (Xi1, Xi2), i = 1, . . . , n, were selected from a bivariate normal population. Thus, the
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probability of agreement assumes the form

ψc = Φ
(c− µD

σD

)
− Φ

(
− c− µD

σD

)
, (2)

where Φ(·) denotes the cumulative distribution function of the standard normal, and µD = µ1 − µ2,
σ2
D = σ11 + σ22 − 2σ12. Based on the normality assumption, the postulated statistical model is given by
P = {p(x;θ) : θ ∈ Θ}. In such case, the likelihood function can be written as

L(θ) =

n∏
i=1

[
(2π)−d/2|Σ|−1/2 exp

{
− 1

2 (xi − µ)>Σ−1(xi − µ)
}]
, (3)

where θ = (µ>,φ>)> ∈ Rd(d+3)/2; in our case, d = 2, with φ = vech(Σ) and the vech(·) operator
defined in Magnus and Neudecker (2007, Sec. 3.8). The log-likelihood for (3) is `(θ) =

∑n
i=1 `i(θ),

where

`i(θ) = −d
2

log(2π)− 1

2
log |Σ| − 1

2
(xi − µ)>Σ−1(xi − µ). (4)

The maximum likelihood estimation of µ and Σ is described, for instance, in Anderson (2003, Sec. 3.2).
Thus, substituting these ML estimates into Equations (1) and (2), we arrive at the ML estimates ρ̂c and ψ̂c.
It should be stressed that under mild assumptions, Lin (1989) derived the asymptotic distribution for ρ̂c,
allowing one to address the statistical inference and enabling, for instance, the construction of confidence
intervals. Details regarding the calculation of the asymptotic distribution for ψ̂c are deferred to Appendix
A.

2.1 Motivating example

Svetnik et al. (2007) conducted a clinical study designed to compare the automated and semi-automated
scoring of Polysomnographic (PSG) recordings used to diagnose transient sleep disorders. The study
considered 82 patients who were given a sleep-inducing drug (Zolpidem 10 mg). Measurements of latency
to persistent sleep (LPS: lights out to the beginning of 10 consecutive minutes of uninterrupted sleep) were
obtained using six different methods. In this work, we focus on two of these methods: fully manual scoring
(Manual) and automated scoring by the Morpheus software (Automatic). Let Xi = (Xi1, Xi2)>, for i =
1, . . . , 82, be the log(LPS) measurements obtained with the manual and automatic methods, respectively.
The measurements have quite similar behavior, and their differences present a slight asymmetry with some
extreme observations (see Figure 1c)

The moment estimates for the mean vector and covariance matrix are

x =

(
2.554
2.309

)
, S =

(
0.771 0.703
0.703 1.252

)
.

Thus, the estimated generalized variance is det(S) = 0.472, showing that dispersion of the dataset is not
large, although the precision coefficient is something low (ρ̂12 = 0.715). The sample estimator for the
CCC is 0.675, which is close to the 0.650 cut-off proposed by McBride (2005), suggesting a low degree
of agreement between the log(LPS) measurements. One explanation for this phenomenon is that there
are some observations far from the concordance line. Indeed, Figure 1a shows that cases 1, 30 and 79
move away from the concordance line, and Figure 1b reveals that these observations lead to a lack of
agreement because they are off-limits. It is interesting to note that if subjects 1, 30 and 79 are eliminated
from the dataset, the sample estimate of the CCC becomes 0.860 (Ĉ12 = 0.967 and ρ̂12 = 0.889); the
degree of agreement is increased by 28% mainly due to an increase in the precision coefficient. We must
however stress that the coefficient of accuracy is not strongly affected. We can see an analogous effect
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Figure 1 Comparison of the two measurement methods (a), averages versus differences between manual
and automatic methods (b) and boxplot of the differences between the measurement methods (c)

.

Table 1 Estimates of CCC (standard errors in parenthesis), precision and accuracy and 95% asymptotic
confidence interval

CCC Precision Accuracy Confidence Interval
With all subjects 0.674 (0.056) 0.715 0.943 (0.564, 0.785)
Subjects 1,30,79 removed 0.860 (0.028) 0.890 0.967 (0.806, 0.915)

Table 2 Estimates of the probability of agreement (c = 2), standard error and 95% asymptotic confidence
interval

ψc SE Confidence Interval
With all subjects 0.975 0.034 (0.909, 1.000)
Subjects 1,30,79 removed 0.999 0.001 (0.998, 1.000)

on the probability of agreement when observations 1, 30 and 79 are removed from the dataset, in all our
experiments we have used c = 2, which in practice must be fixed by the data analyst or based on clinical
judgment.

Figure 2 reveals that by removing subjects 1, 30 and 79, the agreement between measurements increases
by 6%, 10% and 7%, respectively, whereas when deleting the remaining subjects, the agreement between
the log(LPS) measurements remains between 0.657 and 0.691 (the dashed line denotes the CCC estimate
with all observations included). Hence, we can notice that the estimator of the CCC is sensitive to the
deletion of observations 1, 30 and 79, either individually or simultaneously (compare with Table 1). It
should be noted that, although the estimator of ψc is sensitive to the presence of observations 1, 30 and 79,
its influence in percentual terms seems to be lower. In the sequel, we develop local influence techniques to
detect cases that are potentially influential on the estimators of the CCC and the probability of agreement,
ψc. A remarkable feature of the proposed procedure is its ability to evaluate the simultaneous effects of
influential observations without the need to remove such observations from the dataset.
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Figure 2 Case deletion plot: CCC estimates when the ith observation have been removed from the
dataset.
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Figure 3 Case deletion plot: ψc estimates when the ith observation have been removed from the dataset.

3 Influence diagnostics for measures of agreement

3.1 Background

To assess the influence of extreme observations on the maximum likelihood estimates, Cook (1986) pro-
posed to study the curvature of a particular influence measure based on the likelihood function. Indeed, his
work used the likelihood displacement

LD(ω) = 2{`(θ̂)− `(θ̂(ω))}, (5)

where θ̂ and θ̂(ω) are the maximum likelihood estimates based on the postulated and perturbated models,
which are defined as P = {p(x;θ) : θ ∈ Θ} and,

Pω = {p(x;θ,ω) : θ ∈ Θ,ω ∈ Ω}, (6)

respectively, with ω being a q-dimensional perturbation vector that is restricted to some open subset Ω ⊂
Rq . In addition, it is assumed that there is a null perturbation, ω0, satisfying Pω0

= P .
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Note that objective functions other than the likelihood displacement can be used to assess the local
influence (see, for instance, Wu and Luo, 1993; Cadigan and Farrel, 2002). Let f(ω) be a measure of
influence. Thus, the main aim of the local influence approach is to analyze the curvature of the curves
passing through the influence surface ϕ(ω) = (ω>, f(ω))> at the critical point ω0. The idea is to find the
direction associated to the largest normal curvature. This direction may evidence those observations that
have considerable influence on the objective function under small perturbations on the postulated model
and/or the data.

Consider ω = ω0 + εh, where h is a unitary direction (‖h‖ = 1) and ε ∈ R. We know from Cook
(1986) that when the influence function f(ω) = LD(ω) is used, its local behavior around ε = 0 for a direc-
tion h can be characterized by the normal curvature Ch = h>F̈ h, where F̈ = ∂2`(θ̂(ω))/∂ω∂ω>|ω=ω0

.
Moreover, Cook (1986) shows that F̈ = 2∆>(−L̈)−1∆ with

L̈ =
∂2`(θ)

∂θ∂θ>
, and ∆ =

∂2`(θ|ω)

∂θ∂ω>
,

which must be evaluated at θ = θ̂ and ω = ω0, and `(θ) and `(θ|ω) denote the log-likelihood functions
arising from the postulated and perturbated models, respectively. The direction of maximum curvature
hmax is determinated by the eigenvector associated with the largest eigenvalue of the matrix F̈ . Such
direction is used to identify which observations are locally influential. It is well known that Ch is not
invariant under uniform changes in scale (see, for instance, Fung and Kwan, 1997). Thus, Poon and Poon
(1999) proposed the conformal normal curvature, which is a scale-invariant influence measure and is given
by Bh = h>F̈ h/‖F̈ ‖M , where ‖ · ‖M denotes some matrix norm such as ‖F̈ ‖M = (tr(F̈>F̈ ))1/2. An
interesting property of the conformal curvature is that 0 ≤ |Bh| ≤ 1.

For general objective functions, we have that (Cook, 1986) the normal curvature assumes the form

Cf,h =
h>Hfh

(1 +∇>f ∇f )h>(I +∇f∇>f )h
, (7)

where ∇f = ∂f(ω)/∂ω
∣∣
ω=ω0

and Hf = ∂2f(ω)/∂ω∂ω>
∣∣
ω=ω0

, whereas the conformal normal curva-
ture in the direction h evaluated at ω0 (Poon and Poon, 1999) is given by

Bf,h =
h>Hfh

‖Hf‖Mh>(I +∇f∇>f )h
. (8)

According to matrix theory, the local maximum curvature and the corresponding directions are associated
with the generalized eigenvalue-eigenvector solution of the equation |Hf − λDf | = 0, where Df is
defined as (1 + ∇>f ∇f )(I + ∇f∇>f ) or ‖Hf‖M (I + ∇f∇>f ) for the normal or conformal curvature,
respectively.

The first-order approach for local influence (see for instance Cadigan and Farrel, 2002) is measured
using the directional derivative of f(ω), which is given by

Sf,h =
∂f(ω)

∂ε

∣∣∣
ε=0

= h>∇f , (9)

where ∇f = ∂f(ω)/∂ω|ω=ω0
. Cadigan and Farrel (2002) obtained a computationally simple formula for

∇f , which assumes the following form:

∇f = −∆>L̈−1
∂f(θ)

∂θ

∣∣∣
θ=θ̂

.

In the case that ∇f 6= 0, the direction of the maximum local slope is hmax = ∇f/‖∇f‖. Note that the
first-order local influence may be unable to detect some significant directions with large curvature; (see
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Wu and Luo, 1993; Cadigan and Farrel, 2002). It is straightforward to note that

∂Sf,h
∂ε

∣∣∣
ε=0

=
∂2f(ω)

∂ε2

∣∣∣
ε=0

= h>
( ∂2f(ω)

∂ω∂ω>

∣∣∣
ω=ω0

)
h = h>Hfh. (10)

The perturbed model (6) can be regarded as an n-dimensional manifold with ω as a coordinate system.
To construct influence measures of the first and second order, Zhu et al. (2007) introduced the metric tensor
matrixG(ω) defined as the Fisher information matrix with respect to ω, with elements given by

gij(ω) = Eω

{
∂`(θ|ω)

∂ωi

∂`(θ|ω)

∂ωj

}
, for i, j = 1, . . . , n, (11)

where Eω(·) indicates that the expectation is taken with respect to the density function p(x;θ,ω). Thus,
the first-order influence measure (FI) in the direction h is given by

FIf,h =
h>∇f∇>f h
h>G(ω0)h

, (12)

where G(ω0) is the metric tensor matrix evaluated at ω0. The second-order influence measure (SI) in the
direction h is given by

SIf,h =
h>H̃fh

h>G(ω0)h
, (13)

with H̃f being the covariant Hessian matrix at ω0, where the (i, j)th element is given by

(
H̃f

)
ij

=
∂

∂ωi

(∂f(ω)

∂ωj

)∣∣∣
ω=ω0

−
∑
s,r

gr,s(ω)Γ0
ijs(ω)

(∂f(ω)

∂ωr

)∣∣∣
ω=ω0

,

in which gr,s(ω) is the (r, s)th element ofG(ω)−1 and

Γ0
ijs(ω) =

1

2

{
∂

∂ωi
g(ω)js +

∂

∂ωj
gis(ω)− ∂

∂ωs
gij(ω)

}
,

denotes the Christoffel symbol for the Lévi-Civita connection.
Zhu et al. (2007) proposed to investigate how the introduced perturbationω affects the postulated model

P . Consider the case-weight perturbation scheme with perturbed log-likelihood function given by

`(θ|ω) =

n∑
i=1

ωi`i(θ), with ω = (ω1, . . . , ωn)> ∈ Rn, (14)

and `i(θ) being defined in Equation (4). Thus, the density of the perturbed model yielding the log-
likelihood function in (14) takes the form (see Equation (17) of Zhu et al., 2007)

p(x;θ,ω) =

n∏
i=1

exp(ωi`i(θ))/ci(ωi;θ), ci(ωi,θ) =

∫
Rd

exp(ωi`i(ω)) dxi.

Next, we present necessary formulas required to obtain normal and conformal curvatures and first- and
second-order influence measures using Equations (7), (8) and (12), (13), respectively. Moreover, for the
case-weight perturbation defined in (14), we have that the elements of the metric tensor matrix are given by
gij(ω) = δijω

2
i , where δij is the Kronecker delta. Then,G(ω0) = In, and we verify that the perturbation

scheme induced by the model Pω in (18) is appropriate (Zhu et al., 2007).
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3.2 Influence measures for the concordance correlation coefficient and the probability of
agreement

Following Wu and Luo (1993), we consider ρ̂c(ω) and ψ̂c(ω) as objective functions, defined respectively
by

ρ̂c(ω) =
2σ̂12(ω)

σ̂11(ω) + σ̂22(ω) + (µ̂1(ω)− µ̂2(ω))2
, (15)

and

ψ̂c(ω) = Φ
(c− µ̂D(ω)

σ̂D(ω)

)
− Φ

(
− c− µ̂D(ω)

σ̂D(ω)

)
, (16)

where µ̂D(ω) = µ̂1(ω)− µ̂2(ω), σ̂2
D(ω) = σ̂11(ω) + σ̂22(ω)− 2σ̂12(ω), and

µ̂j(ω) =
1∑n
i=1 ωi

n∑
i=1

ωiXij , σ̂jk(ω) =
1∑n
i=1 ωi

n∑
i=1

ωi(Xij− µ̂j(ω))(Xik− µ̂k(ω)), (17)

for j, k = 1, 2, and ω = (ω1, . . . , ωn)>. Thus, ϕ(ω) = (ω>, ρ̂c(ω))> and ϕ(ω) = (ω>, ψ̂c(ω))> are
called the CCC and the probability of agreement surfaces, respectively.

Under the Gaussian assumption, it is straightforward to note that

ci(ωi,θ) =

∫
Rd

|2πΣ|−ωi/2 exp
{
− 1

2ωi(xi − µ)>Σ−1(xi − µ)
}

dxi =
|2πΣ|−ωi/2

|2πω−1i Σ|−1/2
,

leading to the density of the perturbed model, which is given by

p(x;θ,ω) =

n∏
i=1

[
(2π)−d/2|ω−1i Σ|−1/2 exp

{
− 1

2ωi(xi − µ)>Σ−1(xi − µ)
}]
. (18)

Note that the vector of the null perturbation is given by ω0 = 1n in which case Pω0
= P and `(θ|ω0) =

`(θ). As in Galea and Giménez (2016), the first- and second-order influence measures are reduced to

FIf,h = h>∇f∇>f h, and SIf,h = h>H̃fh,

respectively, for each objective function, either ρ̂c(ω) or ψ̂c(ω). The first-order derivative required in
FIρ̂c,h, as well as Cρ̂c,h and Bρ̂c,h, assumes the form

∇ρ̂c =
ρ̂c
nσ̂12

(
Z1 �Z2 − σ̂121

)
− ρ̂2c

2nσ̂12
Z∗, (19)

where Zj = (Z1j , . . . , Znj)
> with Zij = Xij − µ̂j , for i = 1, . . . , n; j = 1, 2 and � represents the

Hadamard product. Moreover, H̃ ρ̂c = H ρ̂c + diag(∇ρ̂c), with

H ρ̂c = Γ1 − (Γ2 + Γ3). (20)

The calculations of (19) and (20) are given in the Appendix B. Whereas∇ψ̂c
= ∂ψ̂c(ω)/∂ω|ω=ω0 assumes

the form

∇ψ̂c
= − 2

σ̂2
D

φ
(c− µ̂D

σ̂D

)
s, (21)

c© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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with

s = σ̂D(Z1 −Z2) +
1

2

(c− µ̂D
σ̂D

){n− 2

n
(Z1 −Z2)� (Z1 −Z2)− σ̂2

D1
}
. (22)

In addition,H ψ̂c
= ∂2ψ̂c(ω)/∂ω∂ω> can be written as,

H ψ̂c
= 2φ

(c− µ̂D
σ̂D

){
∆1 −

1

σ̂2
D

(∆2 + ∆3 + ∆4)− 1

σ̂4
D

ss>
}
. (23)

Details on the derivation of (21) and (23) can be found in Appendix C.
To identify influential observations on ρ̂c(ω) or ψ̂c(ω), we shall now inspect the unitary direction

hmax, corresponding to the maximum absolute value of FIf,h and SIf,h (equivalently, Cf,h and Bf,h)
given by the largest absolute eigenvalue of ∇f∇>f and H̃f (generalized eigenvalue of Hf with respect
to (1 + ‖∇f‖2)(I + ∇f∇>f ) and ‖Hf‖M (I + ∇f∇>f )) for each objective function ρ̂c(ω) or ψ̂c(ω),
respectively. High-order influential cases are the observations with strong influence compared with the
averageM of the valuesMj = |hmax|j for all the cases. M+2 sd(M), where sd(M) denotes the standard
deviation of Mj , j = 1, . . . , n can be used as a benchmark to determine the significance of contributions
for an individual case. We consider this benchmark in our empirical studies of Section 4.

4 Simulation study

In our experiment, 500 datasets with a sample size of n = 25, 50, 100 and 200 from a normal distri-
bution with mean vector µ = (0, 0)> and φ = (1, 0.95, 1)> were generated. To introduce an out-
lier, for each dataset, a single observation of the second variable x2 was changed to x2 + δ, where
δ = 0.5, 1.5, 2.0, 2.5, 3.0 and 3.5. Next, we find the unitary direction related to the maximum local slope,
normal and conformal curvatures and first- and second-order influence measures for the objective func-
tions ρ̂c(ω) and ψ̂(ω). Thus, the percentages of detecting the outlier are computed using the threshold
mentioned above for different values of δ.
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Figure 4 Scatter plot of a typical dataset (with δ = 2) from the simulation experiment
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Tables 3 and 4 present the detection percentage of the single outlier under the case-weight perturbation
scheme. As expected, the outlier detection percentages improve as δ increases. Our findings seem to sug-
gest that, when the perturbed CCC is used as objective function, the second-order influence measures are
more conservative in detecting a single outlier, whereas the FI influence measure and the local maximum
slope were more efficient for the detection of this type of outlier for any value of δ (compare with the
simulation results presented by Galea and Giménez, 2016). Figures 5 and 6 present the influence graphs
for a typical dataset considering δ = 2 (see Figure 4). This plot reveals that second-order procedures may
be unable to identify the introduced outlier. We must highlight that using the FI and SI measures together
achieve a lower detection percentage than using only FI or SI. Moreover, this difference seems more signif-
icant for moderate values of δ. It is interesting to note that when the probability of agreement is perturbed
(with c = 2) allow us a better detection of extreme observations. In addition all the influence methods
present a similar performance (see Table 4).

Table 3 Outlier detection percentage using different influence measures: ρ̂c(ω) as objective function

n Influence δ

measure 0.5 1.0 1.5 2.0 2.5 3.0 3.5
25 C 11.4 33.8 66.4 77.8 86.4 93.4 95.4

B 11.4 33.8 66.4 77.8 86.4 93.4 95.4
FI 28.4 74.4 96.0 99.0 99.8 100.0 100.0
SI 11.4 33.8 66.4 77.8 86.4 93.4 95.4

FI and SI 6.4 27.4 63.2 76.8 86.2 93.4 95.4
50 C 9.6 34.2 59.4 77.4 90.0 96.4 97.0

B 9.6 34.2 59.4 77.4 90.0 96.4 97.0
FI 26.0 76.0 96.4 100.0 100.0 100.0 100.0
SI 9.6 34.2 59.4 77.4 90.0 96.4 97.0

FI and SI 5.6 28.4 58.0 77.4 90.0 96.4 97.0
100 C 11.8 30.8 53.8 74.8 92.4 98.4 98.0

B 11.8 30.8 53.8 74.8 92.4 98.4 98.0
FI 27.0 77.2 97.2 100.0 100.0 100.0 100.0
SI 11.8 30.8 53.8 74.8 92.4 98.4 98.0

FI and SI 8.8 26.8 52.8 74.8 92.4 98.4 98.0
200 C 16.0 42.8 58.2 68.0 89.6 98.2 99.0

B 16.0 42.8 58.2 68.0 89.6 98.2 99.0
FI 26.4 79.2 97.2 100.0 100.0 100.0 100.0
SI 16.0 42.8 58.2 68.0 89.6 98.2 99.0

FI and SI 9.6 36.6 57.0 68.0 89.6 98.2 99.0

We further investigate the empirical performance of the proposal influence measures, based on a sim-
ulation experiment with two added outliers (observations 1 and 10). We must stress that the behavior is
quite similar for the case of two outliers although as expected the detection rates increase at a slower rate
(in terms of δ increment) than the case of a single outlier. These simulation results are deferred to the
Supplementary Material.

5 Real-world application: Transient sleep disorder

Here, we consider the clinical trial about insomnia problems described in Section 2.1. This dataset was
previously analyzed by Feng et al. (2015) using a robust approach within a Bayesian framework. Figure 1
reveals that observations 1, 30 and 79 are outside the limits of agreement and therefore can be identified

c© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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Table 4 Outlier detection percentage using different influence measures: ψ̂c(ω) as objective function

n Influence δ

measure 0.5 1.0 1.5 2.0 2.5 3.0 3.5
25 C 24.6 77.6 98.2 100.0 100.0 100.0 100.0

B 24.6 77.6 98.2 100.0 100.0 100.0 100.0
FI 26.4 81.4 98.6 100.0 100.0 100.0 100.0
SI 24.6 77.6 98.2 100.0 100.0 100.0 100.0

FI and SI 24.6 77.4 98.2 100.0 100.0 100.0 100.0
50 C 23.4 74.0 97.8 100.0 100.0 100.0 100.0

B 23.4 74.0 97.8 100.0 100.0 100.0 100.0
FI 27.0 81.4 98.2 100.0 100.0 100.0 100.0
SI 23.4 74.0 97.8 100.0 100.0 100.0 100.0

FI and SI 23.4 74.0 97.6 100.0 100.0 100.0 100.0
100 C 17.2 58.8 94.6 99.8 100.0 100.0 100.0

B 17.2 58.8 94.6 99.8 100.0 100.0 100.0
FI 26.8 82.2 98.4 100.0 100.0 100.0 100.0
SI 17.2 58.8 94.6 99.8 100.0 100.0 100.0

FI and SI 16.8 58.2 94.6 99.8 100.0 100.0 100.0
200 C 16.8 59.4 89.2 98.8 100.0 100.0 100.0

B 16.8 59.4 89.2 98.8 100.0 100.0 100.0
FI 27.4 83.6 98.8 100.0 100.0 100.0 100.0
SI 16.8 59.4 89.2 98.8 100.0 100.0 100.0

FI and SI 15.8 57.4 89.0 98.8 100.0 100.0 100.0

as potential outliers. It is interesting to note the role of these observations when they are removed from
the data set; observations 1, 30 and 79 do not have an impact on the estimation of the mean vector. This
analysis reveals the high sensitivity of the variance and CCC estimates, with percent changes of -66% and
28%, for det(Σ̂) and ρ̂c, respectively. Whereas the PA appears to be quite less sensitive to the removal of
these extreme observations (see Tables 5 and 6).

Table 5 Percentage changes of the ML estimates for the fitted model.

Estimate with all obs. 1,30,79 change
observations removed (%)

µ̂1 2.554 2.526 -1.090
µ̂2 2.309 2.313 0.190
det(Σ̂) 0.460 0.156 -66.171

To detect influential observations, we employed the diagnostic measures described in Section 3.2, which
have been implemented in an R code available at github (https://github.com/faosorios/CCC/).
The analysis of the first two generalized eigenvectors of theCρ̂c,h curvature (see Figures 7a and b) indicated
that observations 30 and 79 were influential, with slightly less influence for observation 1. Moreover,
Figure 7b shows that observation 79 is highly influential along the direction |h2nd| (the index plot of the
Bρ̂c,h curvature is not presented here because it is very similar to the one displayed in Figure 7a). FIρ̂c,h
and SIρ̂c,h also allow one to detect cases 1, 30 and 79 as influential on the CCC estimate. The time savings
in terms of the computational burden of the first-order approach should be stressed. Moreover, for this
approach, hmax was explicitly obtained. The local influence analysis applied on the PA function allows

c© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com
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(a) Index plot of |hmax| for C
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(b) Index plot of |hmax| for B
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(c) Index plot of |hmax| for FI
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(d) Index plot of |hmax| for SI

Figure 5 Index plot of |hmax| under case-weight scheme for (a) normal curvature, (b) conformal curva-
ture, (c) first- and (d) second-order influence measures for the simulated data: ρ̂c(ω) as objective function.

to note that, although all the procedures are able to detect the observations 1, 30 and 79. The first-order
influence presents a better power of detection.

With the objective of investigating the sensitivity of the CCC estimate, a confirmatory study was con-
ducted, therein consisting of removing the following sets of observations I1 = {1, 30, 79} and I2 =
{1, 30, 35, 79} and computing the percentage change in the estimation of CCC. We must emphasize that
the percentage change (28%) when subset I1 is removed (see Table 6) increases by only 2% when I2 is
removed from the dataset. These results confirm the analyses of Feng et al. (2015) and reveal the extreme
sensitivity of the CCC estimate under the normal assumption. Furthermore, we examine the sensitivity of
the CCC estimate by exploring the effect of subset I1 on the standard error and confidence intervals con-
sidering several methods (Table 7), specifically, the normal approximation, Z-Fisher transformation and
bootstrap. Again, we note the strong effect of dropping subset I1, confirming that observations 1, 30 and
72 are influential data.
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(a) Index plot of |hmax| for C
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(b) Index plot of |hmax| for B
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(c) Index plot of |hmax| for FI
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(d) Index plot of |hmax| for SI

Figure 6 Index plot of |hmax| under case-weight scheme for (a) normal curvature, (b) conformal curva-
ture, (c) first- and (d) second-order influence measures for the simulated data: ψ̂c(ω) as objective function.

6 Concluding remarks

Evaluating the sensitivity of the ML estimates for the CCC and the probability of agreement against atypical
observations is an important step in the analysis of agreement. These influential data may distort the
estimation of the coefficient and lead to incorrect decisions, like replacing one measurement method with
another when their degree of agreement is not really true.

The goal of our work was to propose diagnostic measures to detect data that can exert a strong influ-
ence on the estimates of the CCC and the probability of agreement. It was shown that the case-weight
perturbation scheme is apropriate in the sense defined by Zhu et al. (2007). Closed expressions have been
provided for the matrices required to evaluate the influence measures. A computational implementation of
such diagnostic techniques has been made publicly available. The empirical results seem to suggest that
for the problem under study, first-order influence measures are efficient for the identification of influen-
tial observations, whereas second-order measures were not very powerful. The results are confirmed by a
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Table 6 Percentage changes for ρ̂c and ψ̂c estimates, log-likelihood and Akaike information criterion

Observations ρ̂c change ψ̂c change log-likelihood AIC
removed (%) (%)
— 0.674 — 0.975 — -200.890 411.780
1 0.715 6 0.986 1 -192.990 395.979
30 0.749 11 0.992 2 -186.448 382.897
79 0.724 7 0.990 1 -185.907 381.815
1, 30 0.795 18 0.997 2 -175.741 361.482
1, 79 0.770 14 0.996 2 -175.982 361.963
30, 79 0.808 20 0.999 2 -166.688 343.376
1, 30, 79 0.860 28 1.000 3 -150.728 311.456

Table 7 CCC estimates (standard errors in parenthesis) and asymptotic confidence interval considering
normal approximation, Z-Fisher transformation and Bootstrap. Clinical trial data set.

Method All observations Obs. 1, 30 and 79 removed
Estimate Conf. Interval Estimate Conf. Interval

Normal 0.674 (0.056) (0.564, 0.785) 0.860 (0.023) (0.805, 0.915)
Z-Fisher 0.674 (0.103) (0.549, 0.770) 0.860 (0.107) (0.795, 0.906)
Bootstrap 0.675 (0.104) (0.472, 0.878) 0.861 (0.041) (0.782, 0.944)

simulation study. Although there is not much literature on the assessment of local influence for objective
functions with non-zero first derivatives at the critical point, we must stress that the results allow us to rec-
ommend the identification of influential observations through the combined use of first- and second-order
measures. In addition, our findings are in agreement with the results reported by Feng et al. (2015), who
used an approach for the robust estimation of the CCC suitable for the comparison of various measurement
instruments.

Further work in this area includes extending the estimation and diagnostics for the CCC and the prob-
ability of agreement considering a multivariate t-distribution. Although such models can accommodate
extreme observations, they can still be affected by outlying observations. This topic is being developed by
the authors and will be the subject of a forthcoming paper.
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Figure 7 Index plot of |hmax| for (a) normal curvature, (b) |hmax| against |h2nd| for normal curvature,
index plot of |hmax| for (c) FI and (d) SI influence measures: ρ̂c(ω) as objective function.

Appendix A: Asymptotic normality of the ML estimator for the probability
of agreement

Let θ̂ = (µ̂>, vech> Σ̂)> the ML estimator of µ and φ under the normality assumption. We know that

√
n(θ̂ − θ)

D−→ Nd∗(0,J(θ)),

with d∗ = d(d+ 3)/2 (d = 2), and

J(θ) =

(
Σ 0

0 2D>d (Id2 +Kd)(Σ⊗Σ)Dd

)
,
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Figure 8 Index plot of |hmax| for (a) normal curvature, (b) |hmax| against |h2nd| for normal curvature,
index plot of |hmax| for (c) FI and (d) SI influence measures: ψ̂c(ω) as objective function.

where Dd ∈ Rd2×d(d+1)/2 and Kd ∈ Rd2×d2 denote the duplication and commutation matrices, respec-
tively (see Magnus and Neudecker, 2007, Sec. 3.7 and 3.8). Using the Delta method, follows that

√
n(ψ̂c − ψc)

D−→ N1

(
0,
(∂ψc
∂θ

)>
J(θ)

∂ψc
∂θ

)
,

where ∂ψc/∂θ and J(θ) must be evaluated at θ = θ̂. It is straightforward to note that

∂ψc
∂θ

=
1

σD
φ
(c− µD

σD

)(
− 2, 2,− (c− µD)/σD

σD
,

2(c− µD)/σD
σD

,− (c− µD)/σD
σD

)>
.
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Thus, the asymptotic variance of ψ̂c assumes the form

var(ψ̂c) =
1

n

(∂ψc
∂θ

)>
J(θ)

∂ψc
∂θ

=
2

nσ2
D

φ2
(c− µD

σD

)[
σ2
D +

1

σ2
D

(c− µD
σD

)2{
σ2
11 + σ2

22 + 2σ2
12 + 8(σ11 − σ12)(σ22 − σ12)

}]
,

which must be evaluated at θ = θ̂.

Appendix B: Proof of Equations (19) and (20)

The perturbed estimator of the concordance correlation coefficient is given by

ρ̂c(ω) =
2σ̂12(ω)

σ̂11(ω) + σ̂22(ω) + (µ̂1(ω)− µ̂2(ω))2
,

where ω = ω0 + εh and the perturbed ML estimator θ̂(ω) = (µ̂1(ω), µ̂2(ω), σ̂11(ω), σ̂12(ω), σ̂22(ω))>

is defined in Equation (17). Next, we find the first and second derivative of ρ̂c(ω) under the case-weight
perturbation scheme introduced in (14).

Let

βj(ω) =
d µ̂j(ω)

d ε
, αjk(ω) =

d σ̂jk(ω)

d ε
,

be the first derivative of the perturbed ML estimator of µj(ω) and σjk(ω) with respect to ε, for j, k = 1, 2.
Thus, we obtain

β1(ω)
∣∣
ε=0

= h>
Z1

n
, β2(ω)

∣∣
ε=0

= h>
Z2

n

α11(ω)
∣∣
ε=0

= h>
Z1 �Z1 − σ̂111n

n
, α12(ω)

∣∣
ε=0

= h>
Z1 �Z2 − σ̂121n

n
,

α22(ω)|ε=0 = h>
Z2 �Z2 − σ̂221n

n
,

where � is the Hadamard product, Z1 = (Z11, . . . , Zn1)>, Z2 = (Z12, . . . , Zn2)> and Zij = Xij − µ̂j
for i = 1, . . . , n and j = 1, 2.

This leads to the first derivative of the perturbed ML estimator of the CCC, which is given by

d ρ̂c(ω)

d ε

∣∣∣
ε=0

=
2(d σ̂12(ω)/ d ε)

σ̂11(ω) + σ̂22(ω) + (µ̂1(ω)− µ̂2(ω))2

∣∣∣
ε=0

− 2σ̂12(ω) d(σ̂11(ω) + σ̂22(ω) + (µ̂1(ω)− µ̂2(ω))2)/ d ε

(σ̂11(ω) + σ̂22(ω) + (µ̂1(ω)− µ̂2(ω))2)2

∣∣∣
ε=0

=
( ρ̂c(ω)

σ̂12(ω)
α12(ω)

)∣∣∣
ε=0

−
( ρ̂2(ω)

2σ̂12(ω)

(
α11(ω) + α22(ω)− 2(β1(ω)− β2(ω))

))∣∣∣
ε=0

= h>
ρ̂c
nσ̂12

(
Z1 �Z2 − σ̂121n −

ρ̂c
2
Z∗

)
where Z∗ = (Z1 �Z1 − σ̂111n) + (Z2 �Z2 − σ̂221n) + 2(µ̂1 − µ̂2)(Z1 −Z2).
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To obtain the second derivative of the perturbed ML estimator of the CCC, we define

A(ω) =
ρ̂c(ω)

σ̂12(ω)
α12(ω), B(ω) =

ρ̂2c(ω)

2σ̂12(ω)

(
α11(ω) + α22(ω)− 2(β1(ω)− β2(ω))

)
.

Thus,

d2 ρc(ω)

d ε2

∣∣∣
ε=0

=
dA(ω)

d ε

∣∣∣
ε=0
− dB(ω)

d ε

∣∣∣
ε=0

= h>(Γ1 − (Γ2 + Γ3))h,

with

Γ1 =
2

n2
ρ̂2c
σ̂12

(
σ̂121n1>n − 1n(Z1 �Z2)> −Z1Z

>
2

)
− 1

2n2

( ρ̂c
σ̂12

)2(
(Z1 �Z1 − σ̂111n)

+ (Z2 �Z2 − σ̂221n) + 2(µ̂1 − µ̂2)(Z1 −Z2)
)(
Z1 �Z2 − σ̂121n

)>
,

Γ2 =
(∇ρ̂c
σ̂12
−
( ρ̂2c
σ̂12

)2Z1 �Z2 − σ̂121n
n

)(Z1 �Z1 − σ̂111n
n

+
Z2 �Z2 − σ̂221n

n

)>
+

ρ̂2c
n2σ̂12

(
σ̂2
111n1>n − 1n(Z1 �Z1)> −Z1Z

>
1 + σ̂2

221n1>n − 1n(Z2 �Z2)> −Z2Z
>
2

)
Γ3 =

ρ̂2c
n2σ̂12

(
(Z1 −Z2)(Z1 −Z2)> − (n+ 1)(µ̂1 − µ̂2)(Z1 −Z2)1>n

)
where ρ̂c = ρ̂c(ω)|ω=ω0 and µ̂1 = µ̂1(ω)|ω=ω0 , µ̂2 = µ̂2(ω)|ω=ω0 , σ̂11 = σ̂11(ω)|ω=ω0 , σ̂12 =
σ̂12(ω)|ω=ω0

, σ̂22 = σ̂22(ω)|ω=ω0
. Finally, we have

∂ρ̂c(ω)

∂ω

∣∣∣
ω=ω0

= ∇ρ̂c =
ρ̂c
nσ̂12

(
Z1 �Z2 − σ̂121n −

ρ̂c
2
Z∗

)
∂2ρ̂c(ω)

∂ω∂ω>

∣∣∣
ω=ω0

= H ρ̂c = Γ1 − (Γ2 + Γ3),

this yields Equations (19) and (20).

Appendix C: Proof of Equations (21) and (23)

For the perturbed estimator of the probability of agreement, defined in Equation (16), we have that

d ψ̂c(ω)

d ε

∣∣∣
ε=0

=

n∑
i=1

∂ψ̂c(ω)

∂ωi

dωi
d ε

∣∣∣
ε=0

= h>∇ψ̂c
,

where ∇ψ̂c
= ∂ψ̂c(ω)/∂ω|ω=ω0

, with ω0 = 1 a n-dimensional vector of ones. Thus, the ith elemento of
vector∇ψ̂c

assummes the form.

∂ψ̂c(θ)

∂ωi
= 2φ

(c− µ̂D(ω)

σ̂D(ω)

) ∂

∂ωi

(c− µ̂D(ω)

σ̂D(ω)

)
, i = 1, . . . , n.

In fact, it is easy to see that

∂

∂ωi

(c− µ̂D(ω)

σ̂D(ω)

)
= − 1

σ̂2
D(ω)

{
σ̂D(ω)

∂µ̂D(ω)

∂ωi
+ (c− µ̂D(ω))

∂σ̂D(ω)

∂ωi

}
,
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simple calculations lead to the aforementioned derivative, evaluated at ω = ω0 can be written as

∂

∂ωi

(c− µ̂D(ω)

σ̂D(ω)

)∣∣∣
ω=ω0

= − 1

nσ̂2
D

[
σ̂D(Zi1−Zi2) +

1

2

(c− µ̂D
σ̂D

){n− 2

n
(Zi1−Zi2)2− σ̂2

D

}]
,

which can be written in compact form as

∂

∂ω

(c− µ̂D(ω)

σ̂D(ω)

)∣∣∣
ω=ω0

= − 1

nσ̂D
s,

with s being defined in Equation (22) and the Equation (21) is verified.
Tedious but simple calculations lead to

∂2ψ̂c(ω)

∂ω∂ω>
= 2φ

(c− µ̂D(ω)

σ̂D(ω)

){ ∂2

∂ω∂ω>

(c− µ̂D(ω)

σ̂D(ω)

)
−
(c− µ̂D(ω)

σ̂D(ω)

) ∂

∂ω

(c− µ̂D(ω)

σ̂D(ω)

) ∂

∂ω>

(c− µ̂D(ω)

σ̂D(ω)

)}
,

for i, j = 1, . . . , n. Moreover

∂2

∂ω∂ω>

(c− µ̂D(ω)

σD(ω)

)
=

1

σ̂4
D(ω)

∂σ̂2
D(ω)

∂ω

{
σ̂D(ω)

∂µ̂D(ω)

∂ω>
+ (c− µ̂D(ω))

∂σ̂D(ω)

∂ω>

}
− 1

σ̂2
D(ω)

{∂σ̂D(ω)

∂ω

∂µ̂D(ω)

∂ω>
− ∂µ̂D(ω)

∂ω

∂σ̂D(ω)

∂ω>
+ σ̂D(ω)

∂2µ̂D(ω)

∂ω∂ω>
+ (c− µ̂D(ω))

∂2σ̂D(ω)

∂ω∂ω>

}
,

noticing that ∂µ̂D(ω)/∂ω and ∂σ̂D(ω)/∂ω were previously calculated in order to obtain ∇ψ̂c
, it follows

that it is only required to compute ∂2µ̂D(ω)/∂ω∂ω> and ∂2σ̂D(ω)/∂ω∂ω>. Thus, evaluating in the null
perturbation vector follows that its (i, j)th is given by

∂2µ̂D(ω)

∂ωi∂ωj

∣∣∣
ω=ω0

= − 1

n

{
(Zi1 − Zi2) + (Zj1 − Zj2)

}
∂2σ̂D(ω)

∂ωi∂ωj

∣∣∣
ω=ω0

=
1

n2

[
2(Zj1 − Zj2)2 −

{n− 2

n
(Zi1 − Zi2)2 − σ̂2

D

}
−
{n− 2

n
(Zj1 − Zj2)2 − σ̂2

D

}]
,

for i, j = 1, . . . , n. Bringing together all the above elements we obtainH ψ̂c
and Equation (23) is proved.

References
Anderson, T.W. (2003). An Introduction to Multivariate Statistical Analysis, 3rd Edition. Wiley, New York.
Cadigan, N., Farrel, P. (2002). Generalized local influence with applications to fish stock cohort analysis. Applied

Statistics 51, 469–483.
Carstensen, B. (2010). Comparing Clinical Measurement Methods. Wiley, Chichester.
Chen, F., Zhu, H., Lee, S. (2009). Perturbation selection and local influence analysis for nonlinear structural equation

model. Psychometrika 74, 493–516.
Choudhary, P., Nagaraja, H. (2017). Measuring Agreement, Models, Methods, and Applications. Wiley, New York.
Cook, R.D. (1986). Assessment of local influence (with discussion). Journal of the Royal Statistical Society, Series B

48, 133–169.
Feng, D., Baumgartner, R., Svetnik, V. (2015). A robust bayesian estimate of the concordance correlation coefficient.

Journal of Biopharmaceutical Statistics 25, 490–507.
Fung, W.K., Kwan, C. (1997). A note on local influence based on normal curvature. Journal of the Royal Statistical

Society, Series B 59, 839–843.
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