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Abstract It has been well documented that the presence of outliers and/or
extreme data can strongly affect smoothing via splines. This work proposes
an alternative for accommodating outliers in penalized splines considering the
maximum penalized likelihood estimation under the class of scale mixture
of normal distributions. This family of distributions has been an interesting
alternative to produce robust estimates, keeping the elegancy and simplicity of
the maximum likelihood theory. The aim of this paper is to apply a variant of
the EM algorithm for computing efficiently the penalized maximum likelihood
estimates in the context of penalized splines. To highlight some aspects of the
robustness of the proposed penalized estimators we consider the assessment
of influential observations through case deletion and local influence methods.
Numerical experiments were carried out to illustrate the good performance of
the proposed technique.

Keywords Cook distance · Local influence · Penalized EM algorithm · Scale
mixtures of normal distributions

1 Introduction

Regression methods using splines are very attractive because they represent
a flexible approach to fitting curves and are often used to find the underly-
ing tendencies in the data. Discussions about smoothing and nonparametric
regression can be found, for example, in Silverman (1985), Eilers and Marx
(1996) and Ruppert et al. (2003).

The development of robust methodologies with the objective of attenu-
ating the effect of outliers and/or influential observations in semiparametric
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regression has received considerable attention since the seminal works of Huber
(1979) and Utreras (1981). They introduced the robust smoothing considering
M -estimators. Their ideas have since been refined and applied to more general
contexts. For example, Koenker et al. (1994) proposed the quantile smooth-
ing splines, Oh et al. (2004) proposed M -estimation for smoothing periodic
functions, while Lee and Oh (2007) and Oh et al. (2008) developed robust M -
type estimation procedures with applications to additive mixed models and
local polynomial regression, respectively. More recently, Tharmaratnam et al.
(2010) and Mateos and Giannakis (2012) have discussed very efficient methods
for computing penalized S - and M -type regression splines estimators, respec-
tively. The appropriate selection of the smoothing parameter is crucial in the
class of penalized spline regression models. It is important to note that this
can also be strongly affected by the presence of outlying observations. To avoid
this type of difficulty, Cantoni and Ronchetti (2001), Wei (2005) and Lee and
Cox (2009) have focused on developing methods of robust selection of the
smoothing parameter, while Staudenmayer et al. (2009) and Ibacache-Pulgar
and Paula (2011) have described approaches for accommodating outliers in
semiparametric regressions considering Student-t errors.

With the objective of evaluating the model assumptions and determin-
ing whether outlying or extreme observations can influence the parameter
estimates, diagnostic procedures have been developed in the context of semi-
parametric regressions (Eubank 1985). For example, Eubank (1984) studied
the properties of the prediction matrix for smoothing splines, while Silver-
man (1985) discussed definitions for the residuals. Eubank and Gunst (1986)
proposed measures to evaluate influence in penalized least squares that are
useful in contexts like smoothing spline and ridge regression (Hoerl and Ken-
nard 1970). Studies of influence in the context of ridge regression suggest that
this class of penalized estimators can be very sensitive to extreme observations
(Walker and Birch 1988; Billor and Loynes 1999; Shi and Wang 1999). Thomas
(1991) studied influence to evaluate the impact of extreme observations on the
selection of the smoothing parameter considering the local influence proce-
dure proposed by Cook (1986). Manchester (1996) proposed a graphic tool to
evaluate the sensitivity of some robust smoothing methods through the use
of the influence function. Kim (1996) and Wei (2004) developed diagnostic
measures in smoothing splines based on case deletion procedures. Kim et al.
(2002) and Ibacache-Pulgar and Paula (2011) discussed influence diagnostics
using elimination of observations and local influence, respectively, in partially
linear models.

This work proposes an alternative to accommodate outliers in penalized
splines, also known as P-splines (see Eilers and Marx 1996), considering dis-
tributions with heavier tails than the normal. Specifically, we considered the
class of scale mixtures of normal distributions (SMN), which includes as par-
ticular cases exponential power, contaminated normal, slash and Student-t
distributions, among others (Andrews and Mallows 1974). SMN distributions
have often been proposed for developing robust inferences in various statis-
tical models. This class of distribution inherits many of the basic properties
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of the normal distribution and allows for maintaining the elegance and opti-
mality of estimating parameters considering the maximum likelihood method
(ML) under normality (Lange and Sinsheimer 1993; Jamshidian 1999). In this
work we apply a penalized EM algorithm (Green 1990) to estimation in P-
splines. An interesting characteristic of the proposed procedure is that the
estimator of the coefficients adopts the form of a weighted smoother. The es-
timation procedure proposed in this work has been implemented in the heavy
package (Osorio 2014), developed as an extension of the R statistical software
(R Core Team 2014). The package is available from CRAN and the website
http://heavy.mat.utfsm.cl. We studied influence diagnostics to determine
the robustness of the proposed procedure against outlying observations and
some common perturbation schemes considering the approaches of case dele-
tion and local influence for models with incomplete data as described in Zhu
and Lee (2001) and Zhu et al. (2001).

This article is organized as follows: Section 2 introduces P-splines consid-
ering heavy-tailed distributions, a variant of the EM algorithm to obtain the
estimators of penalized maximum likelihood (PML) is developed and presents
the optimal selection of the smoothing parameter using a weighted version of
the generalized cross validation criterion (GCV). Section 3 describes the main
results associated with the influence diagnostics by case deletion and local in-
fluence for models with incomplete data and presents the generalized Cook
distance and the normal curvature under several perturbation schemes of the
proposed model. The methodology is applied in Section 4 to the dataset of
life expectancy in 101 countries (Leinhardt and Wasserman 1979) assuming
distributions with heavier tails than the normal, also some simulation results
are discussed. The numerical experiments show the utility of the proposed
methodology. In Section 5 we present some final considerations.

2 P-splines under heavy-tailed distributions

In this section we propose an alternative to accommodating extreme and out-
lying observations in penalized splines based on distributions with heavier tails
than the normal. We also describe the PML estimation for P-splines using a
penalized EM algorithm and present the selection of the smoothing parameter
through a weighted version of the GCV criterion. The estimation of the shape
parameters of the mixture variable is also described.

2.1 Estimation in P-splines using the penalized EM algorithm

Consider the model,

Yi = g(xi) + εi, i = 1, . . . , n, (1)

where the responses Yi are observed at design points xi and g is a smooth
function defined in [a, b]. It is assumed that the design points are such that

http://cran.r-project.org/package=heavy
http://cran.r-project.org
http://heavy.mat.utfsm.cl
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a ≤ x1 < · · · < xn ≤ b and the {εi} are random variables with zero position
and scale φ > 0. For simplicity, we consider that g(x) =

∑p
j=1 ajBj(x), where

p is the number of known basis functions B1(x), . . . , Bp(x). B-splines are a
common choice for the basis functions.

The class of SMN distributions (Andrews and Mallows 1974) represents an
interesting alternative to the normal distribution in the presence of extreme
observations and has been applied very successfully for statistical modeling by
a number of authors, among them Butler et al. (1990), Lange and Sinsheimer
(1993) and Jamshidian (1999). A random variable Y is said to follow an SMN
distribution (Andrews and Mallows 1974) with position parameter µ ∈ R and

scale φ > 0 if it can be written as Y
d
= µ + τ−1/2Z, where Z ∼ N (0, φ) and

τ is a positive random variable with distribution function H(τ ;ν) where ν
represents a scalar or vector valued parameter that control the shape of the
distribution. The density function of Y is given by

f(y) = (2πφ)−1/2
∫ ∞
0

τ1/2 exp(− 1
2τD

2) dH(τ), (2)

where D2 = (y−µ)2/φ represents the distance between y to the center µ scaled
by φ. When Y has a density given by (2) we will denote Y ∼ SMN (µ, φ;H). It
is convenient to write the distribution of the random variable Y alternatively
using the following hierarchical representation:

Y |τ ∼ N (µ, φ/τ), τ ∼ H(ν). (3)

The formulation given in (3) is useful, for example for random number gener-
ation and parameters estimation using missing data formulation through the
EM algorithm (Dempster et al. 1977). In this work the Student-t and slash
distributions are considered to illustrate the proposed methodology. In fact,
the Student-t distribution can be written using the representation in (3) con-
sidering that τ ∼ Gamma(ν/2, ν/2) and we write Y ∼ t(µ, φ; ν), ν > 0, while
that for the slash distribution, denoted by Y ∼ Slash(µ, φ; ν), ν > 0, we have
τ ∼ Beta(ν, 1), ν > 0. For both, the Student-t and slash distributions, ν rep-
resents the degrees of freedom and this parameter control the kurtosis of the
distribution. It is interesting to note that when ν → ∞ the normal distribu-
tion is recovered. It should be emphasized that other distributions also can be
considered, such as the contaminated normal (Little 1988) and the Laplace or
double exponential (Phillips 2002).

We will introduce scale mixtures of normal distributions for the model
given in (1), by considering the following distributional assumption

Yi
ind∼ SMN (b>i a, φ;H), i = 1, . . . , n, (4)

where B = (b1, . . . , bn)> = (Bj(xi)) is a n× p matrix and a = (a1, . . . , ap)
>.

Thus, P-splines considering heavy-tailed distributions can be introduced by
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obtaining the PML estimates in the following penalized problem,

`λ(θ;Y obs) = `o(θ;Y obs)−
λ

2φ

∫ b

a

{g′′(x)}2 dx

= `o(θ;Y obs)−
λ

2φ
a>K>Ka, (5)

where θ = (a>, φ)>, λ > 0 represents a smoothing parameter andK>K is the
matrix representation of the penalty described in Eilers and Marx (1996) and
K is the k × p matrix (k ≤ p) of the kth order of differencing. Details about
the construction of the difference matrix K, are discussed in Eilers and Marx
(1996, 2010). The log-likelihood function for the class of SMN distributions
given in (5) assumes the form

`o(θ;Y obs) = −n
2

log 2πφ−
n∑
i=1

log

∫ ∞
0

τ
1/2
i exp

(
− 1

2τiD
2
i (θ)

)
dH(τi),

where D2
i (θ) = (Yi − b>i a)2/φ, for i = 1, . . . , n.

The estimation problem given in (5) can be significantly simplified by con-
sidering an incomplete data formulation. Using the hierarchical formulation
of a random variable with an SMN distribution, it is possible to re-write the
model proposed in (4) as

Yi|τi
ind∼ N (b>i a, φ/τi), τi

ind∼ H(ν), i = 1, . . . , n.

Thus, it is possible to apply the penalized EM algorithm (Green 1990) to es-
timate the parameters in (5) by assuming that τ = (τ1, . . . , τn)> are missing
variables. The penalized log-likelihood function for the model based in com-
plete data Y com = (Y >, τ>)> is defined through

`λ(θ;Y com) = `c(θ;Y com)− λ

2φ
a>K>Ka,

with

`c(θ;Y com) = −n
2

log φ− 1

2φ

n∑
i=1

τi(Yi − b>i a)2 + log h(n)(τ ;ν)

= −n
2

log φ− 1

2φ
(Y −Ba)>W (Y −Ba) + log h(n)(τ ;ν),

where h(n)(τ ;ν) is the joint density function of the mixture variables τ =
(τ1, . . . , τn)> and W = diag(τ1, . . . , τn). Assuming that ν is known, it is pos-
sible to show that the conditional expectation of the complete data penalized
log-likelihood function considering a current estimate θ(k), given by

Qλ(θ|θ(k)) = E[`c(θ;Y com)|Y ,θ(k)]− λ

2φ
a>K>Ka,
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can be expressed as

Qλ(θ|θ(k)) = −n
2

log φ− 1

2φ
[(Y −Ba)>W (k)(Y −Ba) + λa>K>Ka], (6)

where W (k) = diag(τ
(k)
1 , . . . , τ

(k)
n ) with τ

(k)
i = E(τi|Yi,θ(k)). In general, it is

possible to show that the weight function, defined by the expectation τ
(k)
i is

given by

E(τi|Yi,θ(k)) =

∫∞
0
τ
3/2
i exp(− 1

2τiD
2
i (θ)) dH(τi)∫∞

0
τ
1/2
i exp(− 1

2τiD
2
i (θ)) dH(τi)

∣∣∣∣
θ=θ(k)

.

Note that for most of the distributions in the SMN class, the weight function

τ
(k)
i can be easily computed (see Lange and Sinsheimer 1993). For the Student-

t distribution is well known that

τ
(k)
i = (ν + 1)/(ν +D2

i (θ
(k))), (7)

while for the slash distribution, τ
(k)
i assumes the form (Jamshidian 1999)

τ
(k)
i =

( 2ν + 1

D2
i (θ

(k))

)P (ν + 3
2 , D

2
i (θ

(k))/2)

P (ν + 1
2 , D

2
i (θ

(k))/2)
, (8)

where P (α, z) is the incomplete gamma function of parameter α at z (Abramowitz
and Stegun 1970, p. 260), defined as

P (α, z) =
1

Γ (α)

∫ z

0

e−ttα−1 dt.

To maximize Qλ(θ|θ(k)) given in (6) with respect to θ = (a>, φ)>, we

solve the first order condition and update θ(k+1) as

a
(k+1)
λ = (B>W (k)B + λK>K)−1B>W (k)Y , (9)

φ
(k+1)
λ =

1

n
{RSSW (k)(a

(k+1)
λ ) + λ‖Ka(k+1)

λ ‖2}, (10)

where RSSW (a) = (Y − Ba)>W (Y − Ba). The PML estimates for the
problem in (5) are obtained by iterating the E and M steps of the algorithm,
described in equations (6) and (9)-(10) until reaching convergence.

It is possible to modify the estimation procedure delineated above to si-
multaneously estimate a, φ and the tuning parameter ν. In this case, the
expectation of the complete data penalized log-likelihood function assumes
the form

Qλ(θ|θ(k)) = Qλ(a, φ|θ(k)) +Qλ(ν|θ(k)), (11)

with θ = (a>, φ,ν>)>, where Qλ(a, φ|θ(k)) is given in equation (6), while

Qλ(ν|θ(k)) = E[log h(n)(τ ;ν)|Y ,θ(k)]. (12)
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For the M step we update a(k+1) and φ(k+1) according to equations (9) and
(10), respectively and we obtain ν(k+1) through

ν(k+1) = arg max
ν

Qλ(ν|θ(k)). (13)

Indeed ν(k+1) can be obtained as the solution of the system of equations

∂Qλ(ν|θ(k))/∂ν = 0.

Hence, the form that conditional expectation (12) and the M step (13) adopt
depends on the specific choice of the distribution of the random variable τi.

In order to illustrate the estimation of the tuning parameter ν, below we
present the estimation of the degrees of freedom for the slash and Student-t
distributions. Additional details about this respect can be found in Lange and
Sinsheimer (1993), McLachlan and Krishnan (1997) and Jamshidian (1999).

For the particular case of the Student-t distribution, it follows that τi|Yi
ind∼

Gamma((ν+1)/2, (ν+D2
i (θ))/2), for i = 1, . . . , n. Using results from McLach-

lan and Krishnan (1997) we have

E(log τi|Yi,θ(k)) = log τ
(k)
i +

{
ψ
(ν(k) + 1

2

)
− log

(ν(k) + 1

2

)}
,

where τ
(k)
i is defined in (7) and ψ(z) = d logΓ (z)/ dz is the digamma function

(Abramowitz and Stegun 1970, p. 268). Thus, the conditional expectation of
the complete data penalized log-likelihood associated with ν, assumes the form

Qλ(ν|θ(k)) =
nν

2
log
(ν

2

)
− n logΓ

(ν
2

)
+
nν

2

{ 1

n

n∑
i=1

(log(τ
(k)
i )− τ (k)i )

+ ψ
(ν(k) + 1

2

)
− log

(ν(k) + 1

2

)}
.

It is possible to update ν(k+1) as the solution to equation ∂Qλ(ν|θ(k))/∂ν = 0
using an one-dimensional Newton-Raphson method.

Using errors following a slash distribution, the calculation of the conditional
expectation in (12), requires evaluating (see Lange and Sinsheimer 1993)

E(log τi|Yi,θ(k)) =

∫ 1

0
log(τi)τ

ν−1/2
i exp(− 1

2τiD
2
i (θ

(k))) dτi∫ 1

0
τ
ν−1/2
i exp(− 1

2τiD
2
i (θ

(k))) dτi

= ψ(ν + 1
2 )− log(D2

i (θ
(k))/2) +

∂P (ν + 1
2 , D

2
i (θ

(k))/2)/∂ν

P (ν + 1
2 , D

2
i (θ

(k))/2)
.

The derivative of the incomplete gamma function ∂P (a, x)/∂a can be evalu-
ated using the algorithm described in Moore (1982). In this case, the condi-
tional expectation in (12) is given by

Qλ(ν|θ(k)) = n log ν + ν

n∑
i=1

E(log τi|Yi,θ(k)).
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Maximizing Qλ(ν|θ(k)) in relation to ν, we obtain

ν(k+1) = − n∑n
i=1 E(log τi|Yi,θ(k))

.

Remark 1 In this work, we address the estimation of the shape parameters
for the mixture variables using the EM algorithm following the approach pro-
posed for a number of authors in settings like nonlinear regression models
(Lange and Sinsheimer 1993; Jamshidian 1999) and linear mixed-effects mod-
els under Student-t errors (Pinheiro et al. 2001; Lin and Lee 2006). Although
the approach of these works has been quite successful in practice, some authors
(see, for instance Lucas 1997; Fernández and Steel 1999) have warned about
potential problems that may arise in the estimation of degrees of freedom for
the Student-t distribution. Particularly, Lucas (1997) has pointed out by using
influence functions for the univariate case that the protection against outliers
is only attained when this parameter is kept fixed. Moreover, when the degrees
of freedom is estimated by maximum likelihood the influence function for the
scale, degrees of freedom and the change-of-variance of the position parameter
is unbounded. Thus, one alternative is to assume that the parameters associ-
ated with the mixture variables τi are known. In order to achieve protection
against outliers Lange et al. (1989) suggest that the degrees of freedom of
the Student-t distribution must kept fixed in a small reasonable value such
as ν = 4. There is an option in the heavy package that allow one to keep the
shape parameter ν fixed.

2.2 Smoothing parameter selection

Several authors have suggested modifications to the GCV criterion (Craven
and Wahba 1979) for the appropriate selection of the smoothing parameter λ.
For example, O’Sullivan et al. (1986) and Gu (1992) proposed versions of the
GCV criterion for non-Gaussian data focused mainly on the penalized maxi-
mum likelihood for distributions in the exponential family, while Wei (2005)
examined the asymptotic properties of the criterion of robust cross valida-
tion based on M -estimation procedures. In this work we choose the smoothing
parameter minimizing the weighted cross validation criterion as defined by
O’Sullivan et al. (1986) as

V (λ) =
1

n

∑n
i=1 τ̂i(Yi − ĝλ(xi))

2

{tr(I −H
Ŵ

(λ))/n}2
=
‖Ŵ 1/2(I −H

Ŵ
(λ))Y ‖2/n

{tr(I −H
Ŵ

(λ))/n}2
, (14)

with τ̂i = E(τi|Yi, θ̂) and ĝλ = (ĝλ(x1), . . . , ĝλ(xn))> = H
Ŵ

(λ)Y , where the
prediction matrix assumes the form

HW (λ) = B(B>WB + λK>K)−1B>W . (15)

As Gu (1992) suggested, it is possible to alternate the minimization of (14)
with the steps of the penalized EM algorithm described in equations (6) and
(9)-(10) or (9)-(13), whichever applies.

http://cran.r-project.org/package=heavy
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Remark 2 The convergence properties of the penalized EM algorithm pro-
posed in Section 2.1 have been studied in the general context of penalized
log-likelihood estimation for λ fixed by Green (1990). However, for varying λ
Gu (1992), Xiang and Wahba (1996) and Gu and Xiang (2001) among oth-
ers, have discussed that choosing the smoothing parameter via the indirect
method described above may not converge. In our implementation, we follow
the suggestions given by Gu (1992). Thus, we not found such problems in our
numerical experiments. In addition, can be stressed that the WGCV criterion
defined in (14) is similar to the robust GCV used by (Tharmaratnam et al.
2010, Eq. 2.18). In fact, following Lucas (1997) the relationship between the
criteria WGCV and robust GCV can be highlighted by defining âλ as the
solution to

min
a

n∑
i=1

ρ(D2
i ) +

λ

2φ
a>K>Ka,

where ρ(D2) = − log f(y;a, φ), with f(y;a, φ) the density function obtained
from Equation (4). Furthermore, we can also note that the matrix H

Ŵ
(λ)

have the same diagonal elements than the following matrix

Ŵ 1/2B(B>ŴB + λK>K)−1B>Ŵ 1/2,

which is analogous to the prediction matrix defined by Tharmaratnam et al.
(2010). The implementation available in the heavy package uses two nested
singular value decompositions in order to efficiently evaluate the weighted
GCV criterion, details are presented in the Appendix A of the supplementary
material.

3 Influence Diagnostics

Below we describe two of the main procedures to determine the influence of
outlying observations. We consider diagnostic measures suitable for models
with incomplete data, based on the PML estimation using the penalized EM
algorithm. Firstly we present the approach of case deletion using the general-
ized Cook distance (Zhu et al. 2001). Subsequently, we develop the diagnostic
using the local influence method proposed by Zhu and Lee (2001).

The proofs of Propositions 1 to 5 are deferred to Appendix B of the sup-
plementary material.

3.1 Case deletion measures

To evaluate the effect of dropping the ith observation on the PML estimation of
the p∗-dimensional parameter vector θ, it is possible to use the Cook distance,
defined as

Ci = (θ̂ − θ̂(i))>M(θ̂ − θ̂(i)), i = 1, . . . , n,

http://cran.r-project.org/package=heavy
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where θ̂(i) represents the PML estimate of θ once the ith observation has been
dropped from the dataset and M is a positive definite matrix of order p∗× p∗
(see Cook and Weisberg 1982). Zhu et al. (2001) proposed the generalized
Cook distance for models with incomplete data as defined by

GCi = (θ̂ − θ̂(i))>{−Q̈λ(θ̂|θ̂)}(θ̂ − θ̂(i)), i = 1, . . . , n,

where Q̈λ(θ̂|θ̂) = ∂2Qλ(θ|θ̂)/∂θ∂θ>|θ=θ̂. To reduce the computational burden

involved in calculating θ̂(i), i = 1, . . . , n, the following one-step approximation
has been proposed (Cook and Weisberg 1982; Zhu et al. 2001)

θ̂1(i) = θ̂ + {−Q̈λ(θ̂|θ̂)}−1Q̇λ(i)(θ̂|θ̂), i = 1, . . . , n,

where
Qλ(i)(θ|θ̂) = E[`c(θ;Y com(i))|Y (i), θ̂]− λJ(θ),

with Y com(i) = (Y >(i), τ
>
(i))
> being the complete data vector when the ith

observation has been deleted and Q̇λ(i)(θ̂|θ̂) = ∂Qλ(i)(θ|θ̂)/∂θ|θ=θ̂. For a wide

variety of statistical models it is possible to write Qλ(θ|θ̂) =
∑n
i=1Qλ,i(θ|θ̂).

Thus, Qλ(i)(θ|θ̂) =
∑
j 6=iQλ,j(θ|θ̂), in which case we have

Q̇λ(i)(θ̂|θ̂) + Q̇λ,i(θ̂|θ̂) = Q̇λ(θ̂|θ̂) = 0,

and consequently we consider the following one-step approximation for the
generalized Cook distance

GC1
i = Q̇>λ,i(θ̂|θ̂){−Q̈λ(θ̂|θ̂)}−1Q̇λ,i(θ̂|θ̂), i = 1, . . . , n.

The following proposition gives the analytical form of the Hessian matrix for
the penalized splines under heavy-tailed distributions discussed in Section 2.

Proposition 1 For the model given in Equation (4) from Section 2.1 the

(p+1)× (p+1) Hessian matrix associated with the penalized Qλ(θ|θ̂) function

evaluated at θ = θ̂ assumes the form

Q̈λ(θ̂|θ̂) =

(
Q̈λ(â|θ̂) 0

0 Q̈λ(φ̂|θ̂)

)
= − 1

φ̂

(
B>ŴB + λK>K 0

0 n/(2φ̂)

)
.

To obtain the generalized Cook distance in the model described in Section
2.1, we consider Qλ(θ|θ̂) =

∑n
i=1Qλ,i(θ|θ̂), with

Qλ,i(θ|θ̂) = −1

2
log φ+

1

2φ

{
τ̂i(Yi − b>i a)2 +

λ

n
‖Ka‖2

}
.

Using the Proposition 1 follows immediately that the one-step approximation
for the generalized Cook distance is given as GC1

i = GC1
i (â) + GC1

i (φ̂), i =
1, . . . , n, where

GC1
i (â) = Q̇>λ,i(â|θ̂){−Q̈λ(â|θ̂)}−1Q̇λ,i(â|θ̂),

GC1
i (φ̂) = Q̇>λ,i(φ̂|θ̂){−Q̈λ(φ̂|θ̂)}−1Q̇λ,i(φ̂|θ̂), (16)
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with

Q̇λ,i(â|θ̂) = − 1

φ̂

{
τ̂i(Yi − b>i â)bi +

λφ̂

n
K>Kâ

}
,

Q̇λ,i(φ̂|θ̂) = − 1

2φ̂
− 1

2φ̂2

{
τ̂i(Yi − b>i â)2 +

λ

n
‖Kâ‖2

}
.

The distances GC1
i (â) and GC1

i (φ̂) given in (16) offer an interesting interpre-
tation. In fact, GC1

i (â) allows to assess the influence of the ith observation

on the PML estimate of a and analogously for GC1
i (φ̂). In addition, these

measures complement and extend the results developed by Eubank and Gunst
(1986); Kim (1996); Wei (2004) and Ibacache-Pulgar and Paula (2011).

3.2 Local influence

The local influence method proposed by Cook (1986) allows studying the effect
produced by introducing small perturbations on the model and/or the data.
The procedure was extended by Zhu and Lee (2001) to manipulate situations
with incomplete data. They were focused on assessing the local behavior of
the Q-displacement function given by

fQ(ω) = 2{Qλ(θ̂|θ̂)−Qλ(θ̂(ω)|θ̂)},

where ω = (ω1, . . . , ωq)
> is a vector of perturbations restricted to some open

subset Ω ⊂ Rq and in the context of this work, θ̂(ω) denotes the PML estimate
of θ based on

Qλ(θ,ω|θ̂) = E[`c(θ,ω;Y com)|Y obs, θ̂]− λJ(θ).

It is assumed that there is a vector of null perturbation ω0 ∈ Ω which satisfies
`o(θ,ω0;Y obs) = `o(θ;Y obs) and `c(θ,ω0;Y com) = `c(θ;Y com).

The objective of the local influence technique is to compare θ̂ and θ̂(ω) by
studying the local behavior of γ(ω) = (ω>, fQ(ω))> around ω0 (Cook 1986;
Zhu and Lee 2001). Consider ω = ω0 + εh, where h, ‖h‖ = 1 is an unitary
direction and ε ∈ R. Zhu and Lee (2001) used the same reasoning developed
by Cook (1986) and showed that the normal curvature Ch(θ) can be employed
to characterize the local behavior of fQ(ω0 + εh) around the value ε = 0 for
a direction h, given by

Ch(θ) = 2h>∆>(ω0){−Q̈λ(θ̂|θ̂)}−1∆(ω0)h,

where ∆(ω) = ∂2Qλ(θ,ω|θ̂)/∂θ∂ω>|θ=θ̂(ω).
The direction of maximum curvature hmax, determined by the vector asso-

ciated with the largest eigenvalue of the matrix F = ∆>(ω0){−Q̈λ(θ̂|θ̂)}−1∆(ω0)
is used to identify how to perturb the postulated model to obtain the greatest
local change in the Q-displacement function.
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Several authors have proposed examining other relevant directions to inves-
tigate local influence. For example Escobar and Meeker (1992) suggested con-
sidering the index plot of Ci(θ) = Chi

(θ), i = 1, . . . , n, where hi is a q×1 vector
with one in the ith position and zeros elsewhere. In fact, Ci(θ) allows the evalu-
ation of the influence of the ith observation due to the aggregated contribution
of all the basic perturbation vectors (Poon and Poon 1999). Poon and Poon
(1999) proposed the conformal normal curvature Bh(θ) = Ch(θ)/{tr(T 2)}1/2
to avoid invariance problems under uniform changes of scale. The conformal
normal curvature satisfies that 0 ≤ Bh(θ) ≤ 1, a property that allows com-
parison of curvatures obtained by considering different SMN models.

Following Thomas (1991) and Shi and Wang (1999) it is possible to deter-
mine the observations that have a strong impact on the smoothing parameter
selection in penalized splines, that is λ̂(ω), obtained by introducing a small
perturbation ω ∈ Ω on the WGCV criterion given in (14). It is assumed that

there is an ω0 ∈ Ω vector of no perturbation, such that λ̂(ω0) = λ̂. The di-

rection of the greatest local change is hmax(V ) ∝ ∂λ̂(ω)/∂ω, which should be

evaluated at ω0. Since λ̂(ω) is chosen minimizing a perturbed version of the
WGCV criterion, we have ∂V (λ,ω)/∂λ|λ=λ̂(ω) = 0. Differentiating both sides

of this equation with respect to ω and evaluating this derivative at ω0, gives{∂2V (λ,ω)

∂ω∂λ
+
∂2V (λ,ω)

∂λ2
∂λ̂(ω)

∂ω

}∣∣∣
ω=ω0,λ=λ̂

= 0.

Thus,

∂λ̂(ω)

∂ω

∣∣∣
ω=ω0

=
{
−
(∂2V (λ,ω)

∂λ2

)−1 ∂2V (λ,ω)

∂ω∂λ

}∣∣∣
ω=ω0,λ=λ̂

. (17)

Below we consider the scale and response perturbation schemes. Each scheme
was applied on the complete data penalized log-likelihood function and the
WGCV criterion. In order to find hmax we must to compute the curvature
matrix F = ∆>(ω0){−Q̈λ(θ̂|θ̂)}−1∆(ω0), where Q̈λ(θ̂|θ̂) was given in Propo-
sition 1 and for each perturbation scheme ∆(ω) assumes the partitioned form
∆(ω) = (∆>a (ω),∆>φ (ω))>, with

∆a(ω) =
∂2Qλ(θ,ω|θ̂)

∂a∂ω>
, ∆φ(ω) =

∂2Qλ(θ,ω|θ̂)

∂φ∂ω>
.

We should emphasize that the ∆(ω) matrix is specific for the perturbation
scheme under consideration. Propositions 2 and 3 present analytic expressions
for the matrix ∆(ω0), while Propositions 4 and 5 give explicit formulas for

∂λ̂(ω)/∂ω when the WGCV criterion is perturbed.

3.2.1 Scale perturbation on complete-data penalized log-likelihood

This perturbation scheme is defined by introducing weights in the scale, that
is, the following distributional assumption is considered

Yi(ω)
ind∼ SMN (b>i a, φ/ωi;H), i = 1, . . . , n, (18)
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where ω = (ω1, . . . , ωn)>, with ωi > 0 for i = 1, . . . , n. In this case, the
vector of null perturbation is ω0 = 1n, with 1n = (1, . . . , 1)>. The perturbed
log-likelihood function for the complete data model assumes the form

`c(θ,ω;Y com) = −n
2

log φ− 1

2φ
(Y −Ba)>W 1/2 diag(ω)W 1/2(Y −Ba),

where diag(ω) = diag(ω1, . . . , ωn) is a diagonal matrix, whose diagonal ele-
ments are given by the vector ω. Then the following proposition holds.

Proposition 2 For the penalized splines considering heavy-tailed distribu-
tions, under the scale perturbation scheme defined in Equation (18) and when
θ = (a>, φ)> are the parameters of interest, the ∆(ω0) matrix can be written
as ∆(ω0) = (∆>a (ω0),∆>φ (ω0))>, where

∆a(ω0) =
1

φ̂
B>Ŵ diag(e), ∆φ(ω0) =

1

2φ̂
e>Ŵ diag(e),

with e = Y −Bâλ being the residual vector.

A direct consequence of Proposition 2 is that the curvature matrix F can
be written as F = F a + F φ, with

F a = ∆>a (ω0){−Q̈λ(â|θ̂)}−1∆a(ω0)

=
1

φ̂
diag(e)ŴB(B>ŴB + λK>K)−1B>Ŵ diag(e),

and

F φ = ∆>φ (ω0){−Q̈λ(φ̂|θ̂)}−1∆φ(ω0) =
1

2n
diag(e)Ŵee>Ŵ diag(e).

This perturbation scheme is equivalent to the case-weights perturbation,
where weights are introduced with the aim to detect which observations have
a prominent contribution on the residual sum of squares, RSSW (a). Indeed,
the case-weights (or scale) perturbation generalizes the concept of influence
by means of cases-deletion (see, for instance Thomas 1991).

3.2.2 Response perturbation on complete-data penalized log-likelihood

This scheme is defined by introducing additive perturbations in the observed
responses as Y (ω) = Y +ω, where ω = (ω1, . . . , ωn)> and ω0 = 0 denotes the
vector of null perturbation. Under this perturbation scheme, the conditional
expectation of the complete data penalized log-likelihood function is given by

Qλ(θ,ω|θ̂) = −n
2

log φ− 1

2φ
[(Y (ω)−Ba)>Ŵ (Y (ω)−Ba) + λa>K>Ka].

To obtain an explicit formulae of the ∆(ω0) matrix under response variable
perturbation consider the following proposition.



14 Felipe Osorio

Proposition 3 For penalized splines assuming the class of scale mixture of
normal distributions, under the response perturbation scheme and considering
that θ = (a>, φ)> are the parameters of interest, then the ∆(ω0) matrix can
be expressed as ∆(ω0) = (∆>a (ω0),∆>φ (ω0))>, where

∆a(ω0) =
1

φ̂
B>Ŵ , ∆φ(ω0) =

1

φ̂
e>Ŵ ,

and e = Y −Bâλ is the residual vector.

Note that when φ is known, the curvature matrix for the response pertur-
bation scheme assumes the form

F = ∆>a (ω0){−Q̈λ(θ̂|θ̂)}−1∆a(ω0)

=
1

φ
ŴB(B>ŴB + λK>K)−1B>Ŵ =

1

φ
ŴH

Ŵ
(λ).

That is, this perturbation scheme is related to the generalized leverage of âλ
(Wei et al. 1998), GL(âλ) = ∂ĝλ/∂Y

> = H
Ŵ

(λ). In fact, for a fixed or
known φ, it is possible to study the influence of extreme observations on their
own fitted values using the index plot of Bi(a) ∝ ĥii(λ), i = 1, . . . , n where

ĥii(λ) denotes the ith diagonal element of the H
Ŵ

(λ) matrix.

3.2.3 Scale perturbation on the smoothing parameter selection

To evaluate the effect of outlying observations on the smoothing parameter
selection, we consider the perturbation scheme defined in (18), In this way,
the perturbed WGCV criterion assumes the form

V (λ,ω) =
RSS

Ŵ
(λ,ω)/n

{tr(I −H
Ŵ

(λ,ω))/n}2
, (19)

where RSS
Ŵ

(λ,ω) = ‖diag−1/2(ω)Ŵ 1/2(I −H
Ŵ

(λ,ω))Y ‖2, and

H
Ŵ

(λ,ω)) = B(B>Ŵ diag−1(ω)B + λK>K)−1B>Ŵ .

Note that the first term of ∂λ̂(ω)/∂ω given in Equation (17) is a scalar that
can be ignored, thus

hmax(V ) ∝ ∂2V (λ,ω)

∂ω∂λ

∣∣∣
ω=ω0,λ=λ̂

.

Based on (19), for the smoothing parameter selection with the scale perturba-
tion scheme, the following proposition gives the specific form of the direction
of largest local curvature.
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Proposition 4 For the smoothing parameter selection procedure based on the
WGCV criterion, under the scale perturbation, the second derivative of V (λ,ω)

with respect to ω and λ evaluated at ω = ω0 and λ = λ̂ can be expressed as

∂2V (λ,ω)

∂ω∂λ

∣∣∣
ω=ω0,λ=λ̂

= −3

c
tr(GŴ )

∂V (λ,ω)

∂ω

∣∣∣
ω=ω0,λ=λ̂

+
1

nc3

{ 1

n
tr(GŴ ) diag(e)Ŵ (I − 2Ĥ)e+ c

[
diag(e)Ŵ (I − 2Ĥ)GŴY

+ 2 diag(e)ŴGŴe+ diag(GŴY )Ŵ (I − 2Ĥ)e
]

− 2

n

[
RSS

Ŵ
(λ̂,ω0) dg((I − 2Ĥ)GŴ )1n − 2 dg((I − Ĥ)Ĥ)1ne

>ŴGŴY
]}
,

where

∂V (λ,ω)

∂ω

∣∣∣
ω=ω0,λ=λ̂

=
1

nc3

{
cdiag(e)Ŵ (I − 2Ĥ)e

+
2

n
RSS

Ŵ
(λ̂,ω0) dg((I − Ĥ)Ĥ)1

}
(20)

with dg(Z) = diag(z11, . . . , znn) for Z = (zij) a square matrix of order n ×
n, while c = 1 − tr(Ĥ)/n, Ĥ = H

Ŵ
(λ̂), G = BS−1K>KS−1B> where

S = B>ŴB + λ̂K>K, e = (I − Ĥ)Y and 1n = (1, . . . , 1)> denotes an
n-dimensional vector of ones.

3.2.4 Response perturbation on the smoothing parameter selection

To perturb the response variable we consider Y (ω) = Y + ω, with ω =
(ω1, . . . , ωn)> where the vector of null perturbation is ω0 = 0. The perturbed
WGCV criterion assumes the form

V (λ,ω) =
RSS

Ŵ
(λ,ω)/n

{tr(I −H
Ŵ

(λ))/n}2
,

where RSS
Ŵ

(λ,ω) = ‖Ŵ 1/2(I −H
Ŵ

(λ))Y (ω)‖2. The following proposition

provides an explicit expression for ∂2V (λ̂,ω0)/∂ω∂λ.

Proposition 5 Let λ̂ the selected value of the smoothing parameter according
the procedure described in Section 2.2. For the response perturbation scheme
we have

hmax ∝
∂2V (λ,ω)

∂ω∂λ

∣∣∣
ω=ω0,λ=λ̂

=
2

nc2

{
(I − Ĥ)>ŴGŴ + ŴGŴ (I − Ĥ)− 2

nc
tr(GŴ )(I − Ĥ)>Ŵ (I − Ĥ)

}
Y ,

where c = 1 − tr(Ĥ)/n, Ĥ = H
Ŵ

(λ̂) and G = BS−1K>KS−1B> with

S = B>ŴB + λ̂K>K.
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Fig. 1: Typical dataset for: (a) Cantoni and Ronchetti (2001), (b) logistic and
(c) “bump” test functions

As we shall see in the confirmatory analysis for life expectancy data, out-
liers can be extremely influential on the selection of the smoothing parameter
(see Table 2). Thus, these perturbation schemes applied on the weighted GCV
criterion allow us to note that it is necessary that both, the fitting procedure
as the smoothing selection technique should be based on a robust approach.
Moreover, the influence measure hmax obtained in Propositions 4 and 5 gen-
eralizes the work of Thomas (1991).

4 Numerical experiments

In this section we evaluate the performance of the proposed methodology
through a simulation study and the analysis of life expectancy data introduced
by Leinhardt and Wasserman (1979). Additional experiments are reported in
Appendices C and D from the supplementary material.

4.1 Simulation study

For our simulation study, we considered the model Y = g(x) + σε, with the
following test functions:

g1(x) = sin(2π(1− x)2), σ = 0.5,

g2(x) =
1

1 + exp(−20(x− 1/2))
, σ = 0.2,

g3(x) = x+ 2 exp(−(16(x− 1/2))2), σ = 0.3.

Function g1 was studied by Cantoni and Ronchetti (2001), Lee and Oh
(2007) and Tharmaratnam et al. (2010), while functions g2 (logistic) and g3
(“bump”) where considerated by Ruppert (2002) is his simulation study. For
each of these functions M = 500 datasets were generated. The sample size
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in each case was n = 100 with design points x1, . . . , xn generated indepen-
dently from the uniform distribution U(0, 1), the random disturbances {εi}
were generated from the contaminated normal distribution

(1− δ)N (0, 1) + δN (0, γ),

for δ = 0%, 5%, 10%, 25%, 40% and γ = 2, 4, 10. We applied P-splines us-
ing B-splines of third-degree and second-order of penalty, with selected knots
dividing the domain of x into 20 segments of equal width. The normal, slash
and Student-t distributions, associated with the H distribution following point
mass at τi, Beta and Gamma, respectively were considered. The degrees of
freedom of the slash and Student-t were fixed at 2 and 4, respectively. To
gain more insights into the performance of the proposed procedure, the mean
squared error (MSE) for each simulated dataset j (j = 1, . . . ,M), was calcu-
lated as

MSEj =
1

n

n∑
i=1

(g(xi)− ĝj(xi))2, j = 1, . . . ,M,

where the smoothing parameter λ was chosen according to the strategy out-
lined in Section 2.2. Figure 1 presents a typical dataset for the case in which
the data have not been contaminated. As well, the real underlying function is
presented for the three test functions considered.

The results of the simulation study are presented in Figures 2 to 7. The
results for γ = 2 are omitted because they are similar to those obtained with
γ = 4. As expected, when there is no contamination, the estimated curves
using heavy-tailed distributions are essentially equivalent to those obtained
under Gaussian errors. However, as the percentage of contamination increases
the estimation under normality worsens, while with heavy-tailed distributions
the adjustment remains robust against outlying observations. An interesting
result in relation to the g3 “bump” function is presented in Figures 6 and 7,
where it is evident that the protection against outliers offered by the use of
heavy-tailed distributions improves only for severe contaminations.

4.2 Life expectancy data

To illustrate the estimation procedure and influence diagnostics described in
Sections 2 and 3, we considered the life expectancy dataset introduced by
Leinhardt and Wasserman (1979), who reported on per capita income in US
dollars and life expectancy for 101 countries in 1979. Thomas (1991) studied
the local influence on the GCV criterion in smoothing splines and identified
observations 9, 15 and 27 as the most influential using a scale perturbation
scheme.

Figure 8 and Table 1 display the results of the fitted model considering
normal, slash and Student-t distributions. For this dataset, we observe that the
estimation procedure under distributions with heavier tails than the normal
produce an fitted model that is insensitive to outlying observations. Although
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Fig. 2: Boxplots of MSE under several contamination levels (δ) and variance
inflation factor γ = 4 considering the three distributional assumptions for the
Cantoni and Ronchetti (2001) test function.
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Fig. 3: Boxplots of MSE under several contamination levels (δ) and variance
inflation factor γ = 10 considering the three distributional assumptions for the
Cantoni and Ronchetti (2001) test function.
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Fig. 4: Boxplots of MSE under several contamination levels (δ) and variance
inflation factor γ = 4 considering the three distributional assumptions for the
logistic test function.
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Fig. 5: Boxplots of MSE under several contamination levels (δ) and variance
inflation factor γ = 10 considering the three distributional assumptions for the
logistic test function.
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Fig. 6: Boxplots of MSE under several contamination levels (δ) and variance
inflation factor γ = 4 considering the three distributional assumptions for the
“bump” test function.
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Fig. 7: Boxplots of MSE under several contamination levels (δ) and variance
inflation factor γ = 10 considering the three distributional assumptions for the
“bump” test function.
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Fig. 8: Life expectancy data with fitted curve under three distributional as-
sumptions: (—) normal, (- -) Student-t and (· · · ) slash models.

Table 1: Estimation summary for the life expectancy data under three fitted
models.

Model ν̂ λ̂ `λ(θ̂;Y obs) WGCV iterations time (sec.)

Normal — 0.1021 -325.4395 48.0393 3 0.002
Slash 1.0966 2.6916 -327.9674 12.8262 104 0.080
Student-t 2.5875 4.1905 -326.8620 18.9559 79 0.071

there are differences in the estimated values for the degrees of freedom (ν̂),

the smoothing parameter (λ̂) and the WGCV criterion, it can be noticed that
the estimated curves ĝ for the slash and Student-t models are quite similar. It
should be stressed that the routine heavyPS from the heavy package requires
less than a tenth of a second to carry out the computations on an iMac 2,12
Intel Quad Core i5 at 3.1 GHz and 16 GB of RAM.

It is possible to identify outliers in a simple manner by considering the
index plot of Mahalanobis distances D2

i (θ) = (Yi − b>i a)2/φ, i = 1, . . . , n
(Lange and Sinsheimer 1993). Under normality, D2

i (θ) follows a chi-square
distribution with one degree of freedom. We use the quantile value χ2

1(ξ) with
ξ = 0.975 to obtain the cutoff shown in the graph in the first panel of Figure 9.
This suggests that under normal errors, observations 49, 58 and 93 are outliers.
The other panels in Figure 9 indicate that when distributions with heavier
tails than the normal are used the methodology allows the accommodation of
outlying observations (compare with Figure 8) by attributing small weights in
the estimation procedure. Indeed this property is related with the influence

http://cran.r-project.org/package=heavy
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Fig. 9: Index plot of the Mahalanobis distances under normality and estimated
weights versus distances for the Student-t and slash models.
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Fig. 10: Index plots of generalized Cook distances.

function of the PML estimation defined by Equation (5) (see Butler et al. 1990;
Lucas 1997). The weights associated with the normal distribution (τ̂i = 1, for
i = 1, . . . , n) are indicated in these panels as a dotted line.

To identify influential observations in the life expectancy dataset we applied
the influence diagnostic methods proposed in this work. Figure 10 presents the
index plot for the generalized Cook distances, GC1

i , for i = 1, . . . , n, consider-
ing the three fitted models. Observations 25 and 27 exercise a strong influence
on the PML estimates with slightly less influence for observations 23 and 35.
The influence of those observations decreases considerably when heavy-tailed
distributions are used such as slash and Student-t distributions. When we con-
sider the assessment of local influence applied to the complete data penalized
log-likelihood function (Figures 11 and 12) we observe that under normality,
observations 23, 25, 27, 58 and 93 are influential against the scale perturba-
tion scheme, while the response perturbation scheme indicates that the fitted
model is particularly sensitive when observations 27, 58, and 93 are perturbed.
The group of highlighted points in the center panel may be because a prop-
erty related to the weights definition in the Student-t distribution (Kent et
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Fig. 11: Index plots of hmax under scale perturbation on the penalized log-
likelihood function.
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Fig. 12: Index plots of hmax under response perturbation on the penalized
log-likelihood function.

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●●

●

●●

●

●●●

●
●

●

●
●
●

●
●

●

●

●

●
●
●

●

●●

●

●

●

●

●

●

0 20 40 60 80 100

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Index

h
m

a
x

normal

9

15

27

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●●●●●

●

●
●●

0 20 40 60 80 100

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Index

h
m

a
x

Student−t

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

0 20 40 60 80 100

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Index

h
m

a
x

slash

Fig. 13: Index plots of hmax under scale perturbation on the smoothing pa-
rameter selection.
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Table 2: Selection of smoothing parameter (with percentage change) for the
three fitted models.

normal slash Student-t

Obs. excluded λ̂ (change) λ̂ (change) ν̂ λ̂ (change) ν̂

none 0.1021 — 2.6916 — 1.0966 4.1905 — 2.5875
23 0.1356 33% 3.0337 13% 1.1663 4.5224 8% 2.7612
25 2.7099 2553% 2.6519 -1% 1.1673 4.0301 -4% 2.7524
27 5.6828 5464% 3.1738 18% 1.2792 4.6736 12% 3.0603
58 0.0787 -22% 2.4344 -10% 1.1484 4.0399 -4% 3.4976
93 0.0805 -21% 2.7566 2% 1.2137 4.1696 -1% 2.8930
9,15 0.0305 -70% 2.5415 -6% 1.0647 4.6219 10% 3.7019
25,27 5.9363 5712% 3.0141 12% 1.2988 4.1281 -1% 2.8900
9,15,27 5.5264 5311% 2.9576 10% 1.2180 4.5460 8% 3.0576
23,25,27 8.5358 8257% 3.9123 45% 1.7378 4.5902 10% 3.3215
9,15,23,25,27 8.3551 8080% 3.3817 26% 1.4475 5.0877 21% 4.1768
23,25,27,58,93 4.8414 4640% 3.7382 39% 3.0355 4.5478 9% 4.5478

al. 1994). It is evident that this influence decreases when we use distributions
with heavier tails than the normal.

Figure 13 presents the influence graphs for the scale perturbation scheme
applied to the weighted cross validation procedure. Under errors normally dis-
tributed we identify that observations 9, 15 and 27 exercise a strong influence
on the selection of the smoothing parameter (see also Thomas 1991). Thus,
our results generalize the ones reported by Thomas (1991). Again it can be ap-
preciated that the estimation procedure considering heavy-tailed distributions
is an effective approach to accommodate outliers.

With the objective of investigating the sensitivity in the selection of the
smoothing parameter against outlying observations, a confirmatory study was
conducted that consisted of dropping observations from the dataset and ob-
taining an estimate of λ by minimizing the WGCV criterion. The results were
compared with the original estimate. Table 2 presents the estimates and per-
centages of relative change for each of the fitted models. This analysis reveals
the extreme sensitivity in the selection of the smoothing parameter under
normal errors. In fact, the highest percentage change (8257%) occurs when
observations 23, 25 and 27 are removed. The results evidence the ability of
SMN distributions to reduce the influence of extreme observations. The sta-
bility that can be noted in the estimation of the degrees of freedom for slash
and Student-t distributions reveals appropriate protection against outliers.

5 Discussion

This work describes the estimation of parameters and the influence diagnostics
in smoothing via penalized splines considering the class of scale mixtures of
normal distributions. It also addresses the resistant selection of the parameter
that controls the smoothness of the fitted curve. The results of the numerical
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experiments highlight the ability of the proposed procedure to accommodate
outlying data. The estimation procedure can be seen as an alternative ap-
proach to the works of Cantoni and Ronchetti (2001), Lee and Cox (2009)
and Ibacache-Pulgar and Paula (2011). It should be streesed that, using the
Laplace distribution (Phillips 2002) our procedure can tackle the median (L1)
nonparametric regression (Koenker et al. 1994). The numerical implementa-
tion of the estimation procedure using a penalized EM algorithm is simple
and computationally efficient. The routines developed are available in the R
heavy package (Osorio 2014). Although we have not seen this situation in our
numerical experiments, Gu (1992) presented a discussion in which a series of
authors indicated that the procedure delineated in Section 2.2 cannot reach
convergence. The author is currently working on an alternative form to carry
out the selection of the smoothing parameter whose convergence is assured.

The proposed methodology can be seen as an M -estimation procedure (see,
for instance Maronna 1976; Lange et al. 1989), thus we can expect that the
procedure performs well for variance-inflation models (Cook et al. 1982) like
the one used in the Monte Carlo simulation study. In an additional simulation
study (see supplementary material) we considered an asymmetric contamina-
tion scheme varying the percentage of outliers (0%, 5%, 10%, 25% and 40%).
This kind of extreme contamination reveals that the statistical modeling us-
ing distributions with heavier tails than the normal one is not the panacea
for all robustness problems (Lange et al. 1989). It is interesting to note that
the penalized EM estimation under heavy-tailed distributions produces curve
estimates very similar to those reported by Tharmaratnam et al. (2010) when
the shape parameters are fixed at very small values. However, models derived
under heavy-tailed symmetric distributions, still can be vulnerable to extreme
and influential observations. The role and definition of outlying and influential
observations in models with heavier tails than the normal one have not been
completely studied. In our opinion an avenue for new developments is to use
the mean-shift outlier model (Wei and Shih 1994).

Explicit expressions have been developed for the necessary matrices re-
quired to diagnose influence considering case deletion techniques and the local
influence method. Interestingly, for the example with real data, all the diagnos-
tic techniques yielded complementary results. The evaluation of influence in
this work extends the earlier results of, for example, Eubank and Gunst (1986);
Kim (1996) and Wei (2004), who considered the deletion methodology, while
the study of local influence generalizes the results of Thomas (1991). We plan
to develop an R package to implement the influence diagnostics presented in
this work, as a complement to the heavy package.

The results developed in this work can easily be adapted to the context
of the ridge regression, in which the proposed methodology extends the works
of Walker and Birch (1988); Billor and Loynes (1999) and Shi and Wang
(1999). It is planned to extend the parameter estimation as well as the influ-
ence assessment considering distributions with heavier tails than the normal
for semiparametric nonlinear mixed effects models according to the approach
proposed by Elmi et al. (2011). To reach this objective may require consid-

http://cran.r-project.org/package=heavy
http://cran.r-project.org/package=heavy
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ering an estimation procedure using a stochastic EM algorithm such as that
presented by Meza et al. (2012).

Supplemental Materials

Supplementary Material includes details about the computational implemen-
tation, proofs of Propositions 1 to 5 and additional results obtained from a
Monte Carlo simulation study and a real data analysis.
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