INFLUENCE DIAGNOSTICS FOR ROBUST P-SPLINES USING
SCALE MIXTURE OF NORMAL DISTRIBUTIONS

FELIPE OSORIO

SUPPLEMENTARY MATERIAL

Appendix A presents details about the computational implementation. Proofs
of Propositions 1 to 5 are established in Appendix B. Additional results obtained
from a real data analysis and a Monte Carlo simulation study are presented in the
Appendices C and D, respectively.

APPENDIX A. NOTES ABOUT THE COMPUTATIONAL IMPLEMENTATION

Below we describe the computational strategy adopted in the heavy R package
that uses the estimation procedure proposed in this work. A set of routines has been
written in C in order to accelerate some of the calculations. The implementation
is fairly simple and most of the cases has been possible to draw upon the routines
from the BLAS library (Lawson et al., 1979), Linpack (Dongarra et al., 1979) and
Mathlib, included in the R software (R Core Team, 2014).

The M step of the algorithm, described in Equations (9) and (10) from Section
2.1 can be efficiently computed by considering U = W(k)l/zB and decompose U
using a singular value decomposition like UDV ", where U is n x p matrix such
that U 'U = I,, D = diag(éi1,...,0p) and V is an orthogonal p x p matrix. It is
important to note that the form of decomposition highlights that it is possible to
overwrite the matrix U in order to keep storage to a minimum. A second singular
value decomposition is then calculated:

KVD™'=QRS",

where only R = diag(ry,...,7,) and the orthogonal p x p matrix S are stored. Let
Z = UTW(k)l/QY and ¢ = S' Z. Thus, we define

o™ = S(IT+AR*) e, A>0, (A.1)
and proceed to calculate the fitted values and residuals for the current fit as
gg\kJrl) _ Uag\k+1) and eg\k+1) g gg\kJrl)’

respectively. Hence, Equation (10) adopts the form

k 1 k _
N = el P+ AR AR e}, (A.2)
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Using the results above, it is possible to rewrite the WGCV criterion defined in
(14) from Section 2.2 for the smoothing parameter selection as

k+1
1 [lel™)?

V) =06 Zedfyn)z (A.3)

where edf represents the effective number of parameters, defined as edf = tr Hy (\),
which can be calculated efficiently as

P
1
df =tr(I +\R*) ' =) ——.
¢ oI+ ) Z 14 Ar?
j=1 J
We use the Brent’s method (Brent, 1973) to carry out the minimization of V' (\)
given in (A.3). Finally, once convergences of the algorithm was reached, we take
~ 1~ ~ —-1/2____
a=VD "a,, g,=W Ua,.
The estimation procedure according to the algorithm described in this section is
available in the heavyPS function of heavy package.

APPENDIX B. PROOFS OF MAIN RESULTS

In this appendix we derive the differentials d QA(0|§), d2, Qx(6, w|§) and d2, V(\, w)
for scale and response perturbation schemes. The necessary matrices Q(8(0), A (w)
and the vector 92V (\,w)/0N0w " are obtained efficiently using the differentiation

method and by applying some identification theorems discussed in Magnus and
Neudecker (1999).

Proof of Proposition 1. The complete data penalized log-likelihood function given
in Equation (6) from Section 2.1 is

Q:(08) =~ loz o 5

Differentiating @ ,\(9|5) with respect to a, we obtain

(Y — Ba) ' W(Y — Ba) + \a' K' Ka),

da Q1(6]6) = %{(Y — Ba)"WB - a' K K}da,
42Qx(6]6) = —%(da)T{BTﬁ\/B + K"K} da,

and the differential of d, QA(0|§) with respect to ¢ leads to

42, Qx(6]0) = —é

In addition, the differentials of QA(0|§) with respect to ¢ are given by

d¢{(Y — Ba)TWB — A\a" K"K} da.

ds Qx(0]0) = —— do + %{(Y — Ba) W(Y — Ba) + \a' K Kal}d,

2¢
~ n 1 —
d; Q1 (616) = 507 d?¢ — g{(Y — Ba) "W (Y — Ba) + \a' K" Ka} d*¢.
From the first-order conditions
B'"WY — (B'WB+ ) K K)a =0, (B.1)

n¢ — (RSSw (@) + \a' K'Ka) =0, (B.2)


http://cran.r-project.org/package=heavy
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follow immediately that

1
d2Qx(010)|,_; = g(da) {BTWB + AK 'K} da,
2 2 3 noo2
a2, Q.(6]8) !0 =0, d¢Q>\(0|0)]9=§: _ﬁd o.
Applying the second identification theorem given in Magnus and Neudecker (1999)
we obtain Q(8]6), and the proof is complete. O

Proof of Proposition 2. The @Q-function for the perturbated model introduced in
Equation (18) from Subsection 3.2.1 assumes the form

Qx(0,w]0) = —= log ¢—%[(Y Ba) ' W'/2 diag(w)W"2(Y —Ba)+a" K Kal,
where w is an n-dimensional perturbation vector, the perturbated model reduces

to the postulated model when wqy = 1.
Taking differentials of the Q(0,w|6) with respect to 8 = (a™,¢) ", we get

dy Qx(6,w|6) = é{(y — Ba)"W diag(w)B — Aa" KK} da,

dy Qx(0,w|0) = % de + ;2 {(Y — Ba)T W2 diag(w)W'*(Y — Ba)

+xa' K" Ka}dg,

using that z " diag(w) = w ' diag(z) and diag(w) diag(z) = diag(z) diag(w) for z
an n-dimensional vector, the differentials d, @(6,w|0) and dy QA(0,w|0) can be
written as

1 .
d, QA (0,w]|0) = f{wT diag(e)WB — \a' K" K} da,

~ 1 .
dg Qr(0,w|0) = % do + — 757 —{w" diag(e)\We+ \a' K" Ka} d¢,
where € = Y — Ba. To find A (w), we differentiate d, Q,(6,w|8) and dg Qx(6,w|0)
with respect to w, thus

2. Qx(0,0]0) = %(dwf diag(e)W B da, (B.3)

42, Qx(0,0]0) = =5 (dw)T diag(e)Wedg. (B.4)

¢2
Applying the second identification theorem given in Magnus and Neudecker (1999)
and evaluating (B.3) and (B.4) at @ = 6 and w = wy we obtain A(wy), and the
proof is complete. O

Proof of Proposition 3. Under the response perturbation Y (w) = Y + w, the Q-
function for the perturbated model is given by

~ 1 —
Qx(0.6[6) =~ lox 6 — 5 [(¥ (w) ~ Ba) W(Y(w) - Ba) + ha” K Kal,
where w is an n-dimensional perturbation vector and the vector of null perturbation
vector is given by wg = 0.



4 FELIPE OSORIO

The first differential of Qx(6,w|0) with respect to 6 = (aT,¢)7T is

da Qx(6,w|6) = %{(Y(w) —Ba)"WB-)a' K'K}da,

A Qx(0,w]0) = ——~ dé+ —{(Y (w) — Ba) W (Y (w) — Ba) + \a" K Ka}do,

1y
2¢ 2¢°
taking the differential of d, Q)\(O,wré) and dg Q)\(O,wré) with respect to w we
have

42, QA(6,w|6) = %(dw)Tﬁ\fB da, (B.5)
~ 1 ~
d2, Qr(6,w|0) = ﬁ(dw)TW(Y(w) — Ba) dé. (B.6)

The A(wg) matrix can be obtained by applying the second identification theorem
(Magnus and Neudecker, 1999) and evaluating (B.5) and (B.6) at 8 = 0 and w =
wop. Thus, the proposition is verified. ([

Proof of Proposition 4. The weighted cross-validation criterion under the scale per-
turbation defined by Equation (19) from Subsection 3.2.3 is given by

RSS=(\,w)/n
V) = T H o W)

where
RSSm(A\w) =Y (I - Hp(\w)) T W2 diag(w)WY(I - Hp (A w))Y,
and e —~
Hg(\w) = B(B'W diag(w)B + AK ' K)"'B" W diag(w).
Next, we shall write RSSi(\,w) = RSS(\,w) and Hy(A\,w) = H(\,w). Let
edf(\,w) = tr H(\,w) be the effective number of parameters for the perturbed
model. Taking the differential of V' (A, w) with respect to w leads to

AV Ohw) = = edfl(/)\r?w)/n)‘l {(1 —edf(\,w)/n)? dy RSS(), w)
~ RSS(\,w) du(1 — edf(), w)/n)Q}, (B.7)

is easy to see that,
d, H(\,w) = —BS~'BTW diag(dw)BS ' BT W diag(w) + BS~'BT W diag(dw)
= BS 'B"W diag(dw)(I — H(\,w)) (B.8)

where S = BT‘//‘\/diag(w)B + AK"K. Thus, using the properties of the trace
operator, we obtain

2 (1—edf(\,w)/n) x 17 dg((I— H(\, w))BS~ BT W) dw.

du(1-edf(A,w)/n)* = —>
(B.9)

Let e, = (I — H(\,w))Y, direct calculations show that
duRSS(\,w) = —Y T (dy H(\, w)) T W2 diag(w) W/ 2e,,
- ezﬁ\/l/z diag(w)ﬁ\/l/2 (duyHM\w))Y
+ ezﬁ\/l/z diag(dw)wl/zew. (B.10)
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Substituting equation (B.8) into (B.10), and using some simple algebra we obtain
d,RSS(\,w) = e (I — 2H(\,w))TW diag(e,,) dw. (B.11)

Therefore, using Equations (B.9) and (B.10) the first differential of V(A w) with
respect to w given in Equation (B.7) can now be written as

WV he) = g :(/A”w) e {(1 — edf(\, w)/n)e] (I — 2H(\, w))T W diag(e.,)
+ % RSS(\, w)1Tdg((I — H(, w))Bs—lBTvAv)} dw. (B.12)

Applying the first identification theorem by Magnus and Neudecker (1999) and
evaluating (B.12) at A = X\ and w = wy leads to OV (A, wp)/0w given in Equation
(20) from Subsection 3.2.3

Using matrix differentiation, we have
dy HO\, w) = —GW diag(w) d\, (B.13)
where G = BS 'K KS 'B'". Thus,

da(1 —edf(\,w)/n) "2 = —%(1 — edf(\, w)/n) "t tr(GW diag(w))d),  (B.14)
and
dye, = —(dy H(\w))Y = GW diag(w)Y dA. (B.15)

Therefore, taking the differential of RSS(\, w) with respect to A we obtain
dy RSS(\,w) =2Y T diag(w)WGW diag(w)e,, dA (B.16)

Using Equations (B.12)-(B.16), and after some algebra yields to the differential of
d,, V(\, w) with respect to A which is given by

d?\w V()‘v w) = _m tr(Gﬁ\/ dlag(w)) dA dw V()\7 w)
o edfl(/):bw)/n)s {%tr(GW diag(w))e, (I — 2H (A, w)) W diag(e,,)

+ (1 — edf(A\, w)/n)[Y T diag(w)WG(I — 2H(\,w))T W diag(e.,)

+ 2e] diag(w)WGW diag(e,) + e (I — 2H(A\,w)) T W diag(GW diag(w)Y)]
+ %YT diag(w)WGW diag(w)e,17 dg((I — H(\,w))BS~'BTW)

+ %RSS(A,w)lI dg(GW diag(w)BS 'BTW

(- H(A,w))GVTf)}dAdw, (B.17)

where the differential d,, V' (A, w) is given in Equation (B.12) and dg(Z) = diag(z11,
coosZnn) =1 © Z for Z = (z;;) a square matrix of order n x n with ® being the
hadamard product. Thus, evaluating (B.17) at A = Xand w = wp and apply-
ing the second identification theorem by Magnus and Neudecker (1999) we obtain
9*V (A, wg)/ONOw |, _5 and the proof is complete. O
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Proof of Proposition 5. Under the response perturbation scheme, Y (w) =Y + w,
where w = (w1, ...,w,)" with wy = 0, the perturbed WGCV criterion assumes the
form

RSSH (A, w)/n

V@) = Gr B ) ey

where
RSSw(\ w) = Y (w)(I — HW(A))TW(I —Hz(N\)Y (w),
and . .
Hz(\)=BB'WB+)\K'K)"'B'W.
In order to simplify the notation we will write RSSH(\,w) = RSS(\,w) and

Hy(\) = H()). The first differential of V(A,w) with respect to w assumes the
form

dy RSS(\, w)
{1 —te(H(N))/n}?’

AoV, w) = %
where
d, RSSO\, w) =2Y " (w)(I — H\) W (I — H(\)) dw.

Let edf(A) = tr H(A) be the effective number of parameters, thus taking the differ-
ential of d,, V(\, w) with respect to A yields

A,V w) = % da(1 —edf(\, w)/n) 2Y T (w)I — HA)TW(I — H\)) dw
2/n

T ey Y| @Ol - HO)TW(I - HO))dw,
(B.18)

Let S = B'WB + \K " K, and using that
dyH(\) = —BS~'(d, S)S'B'W = —GW d),
where G = BST'K"KS !B, leads to
dy(I = H)TW(I = H(\) = —(dy HO\)TW(I = HQ\) = (I - H(\) "W dy H())

= (WGW (I — H(\) + (I - H\)TWGW)d),
(B.19)

therefore

dn(1—edf(\) /)2 = 21"y H(Y) =

2/n —
(1 —edf(\)/n) 5 tr(GW) dA.

A= eato/r
(B.20)
Substituting equations (B.19) and (B.20) into (B.18) yields
2/n
(1 —edf(N\)/n)?
2/n

~ T et ) tr(GW)Y T (W)(I ~ HO) W(I ~ HQV)) } dAdw.
(B.21)

&2 V(\w) = {YT(w)(WGvT/(I “H\)+ (I - HN\) WGW)

Evaluating (B.21) at A = X and w = w, and applying the second identification
theorem by Magnus and Neudecker (1999), we obtain 92V (X, w)/0A0w |, _5 and
the Proposition 5 is verified. (]
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APPENDIX C. REAL DATA EXAMPLE

We consider the balloon dataset reported by Davies and Gather (1993) and
previously analyzed by Kovac and Silverman (2000), Lee and Oh (2007) and Thar-
maratnam et al. (2010). The data are radiation measurements from the sun, taken
during the flight of a weather balloon. Due to the rotation of the balloon, or for
some other reasons, a large amount of outliers were introduced because the measur-
ing instrument was occasionally blocked from the sun. The dataset is included in
the R package ftnonpar available from CRAN repository. The sample size equals
4984. Following the model settings from Tharmaratnam et al. (2010), we applied
P-splines using B-splines of third-degree and second-order of penalty, with 35 knots
spread equally. The model was fitted using the routine heavyPS from the R package
heavy, also avaliable at CRAN. All the computations were done on an IBM x3650
M4 Server with 2 Intel Xeon E5-2670 processors and 128 GB of RAM Quadro 6000.

TABLE 1. Estimation summary for the balloon dataset under three
fitted models.

Model v X 15\ (5, Y obs) edf WGCV  iterations time (sec.)
Normal — 0.3284  2470.705 27.1735 0.0220 3 0.060
Slash 0.4306 0.0081  7503.993  30.2584 0.0001 101 3.529
Student-t 0.9712 0.0230 7513.882  30.3645 0.0003 84 3.799

As expected, the estimation procedure based on heavy-tailed distributions pro-
duces a curve estimate that is not affected by the outlying observations (see Figure 1
and Table 1). On the other hand, the curve estimate obtained under the normality
assumption suffers from the presence of the outliers. That is, the whole estimated
curve was pulled downwardly away from the majority of the observations. Another
interesting feature of the proposed estimation procedure is that the implementation
is fairly simple and ensure a reasonable computational speed (Compare with the
numerical experiments reported by Staudenmayer et al., 2009).

We conducted an additional experiment, considering a sequence of values for the
number of knots. Figures 2 to 7 show the fitted curves for the balloon dataset con-
sidering 15, 20, 25, 30, 35 and 40 knots. Table 2 presents the estimation results for
this dataset under normal, slash and Student-¢ errors. It is interesting to note that
for any number of knots the fitted curve under gaussian errors is strongly affected
by the outlying observations, however the fitted curve obtained using heavy-tailed
distributions do not suffer from this phenomenon. An unexpected finding is that
the number of knots have an extremely large influence on the fitted curve under the
normality assumption, but this influence is reduced when we consider distributions
with heavier tails than the normal ones

APPENDIX D. SIMULATION STUDY

A small simulation study was conducted to illustrate the practical performance
of the proposed estimation procedure under a severe contamination scheme. The
design of the simulation study is based on the used by Tharmaratnam et al. (2010)
(see also Cantoni and Ronchetti, 2001; Lee and Oh, 2007). We have used the
following test function

Y; =sin(2r(1 —2)}) +¢, i=1,...,n.


http://cran.r-project.org/web/packages/ftnonpar/
http://cran.r-project.org
http://heavy.mat.utfsm.cl/files/man/heavyPS.html
http://cran.r-project.org/web/packages/heavy/
http://cran.r-project.org
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FI1GURE 1. Fitted curve for the balloon dataset under three distri-
butional assumptions: (—) normal, (- --) Student-¢ and (--) slash
models.

TABLE 2. Summary for the balloon dataset under three fitted
models, considering different number of knots.

Number normal slash Student-t

of knots A lr(0;Yos) A U 0(0;Yos) A U UA(0;Y ops)
15 0.010 2408.03 0.000 0.499 6721.26 0.000 1.119 6742.48
20 0.011 2419.76 0.000 0.481 6945.77 0.001 1.076 6965.06
25 0.018 2439.09 0.000 0.432 7349.22 0.000 0.966 7375.85
30 0.657 2427.79 0.000 0.437 7382.80 0.001 0.976 7406.13
35 0.328 2470.71 0.008 0.431 7504.00 0.023 0.971 7513.88
40 0.089 2515.78 0.001 0.434 7554.08 0.001 0.967 7573.12

normal Student-¢ slash

g £ £

F1cURE 2. Fitted curve for the normal, Student-t and slash models
using 15 knots.
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normal Student-t slash

FIGURE 3. Fitted curve for the normal, Student-t and slash models
using 20 knots.

normal Student-¢ slash

s s D

F1cURE 4. Fitted curve for the normal, Student-t and slash models
using 25 knots.

normal Student-¢ slash

I £ £

F1cURE 5. Fitted curve for the normal, Student-t and slash models
using 30 knots.

We generated M = 1000 datasets of a sample size n = 100 from the model above
with design points x1,...,x, generated independently from the uniform distribu-
tion U(—1,1), the random disturbances {¢;} were generated from the contaminated
normal distribution
(1 —0)N(0,0.7%) + 6N (20, 2%),

for & = 0%, 5%, 10%,25% and 40% of outliers. We applied P-splines considering
B-splines of third-degree and second-order of penalty, with 25 knots spread equally
according to the quantiles of the data. The normal, slash and Student-¢ distri-
butions were considered, fixing the degrees of freedom for the slash and Student-¢
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Student-t slash

FIGURE 6. Fitted curve for the normal, Student-t and slash models
using 35 knots.

normal Student-¢ slash

FIGURE 7. Fitted curve for the normal, Student-t and slash models
using 40 knots.

at 1/2,1 and 2, and 1,2, and 4, respectively. The smoothing parameter is chosen
by minimizing the weighted generalized cross-validation (WGCV) criterion defined
in Section 2.2. Figure 8 displays two typical datasets together with the fitted
curve from the gaussian and Student-¢ models (fitted curve for the slash model is
similar to the obtained under Student-¢ errors and is not shown here), unlike the
P-splines considering the assumption of normality the penalized spline estimator
under Student-t errors with 1 degrees of freedom remains close to the true regression
function (solid line) for both situations, without and in presence of outliers.

To assess the performance of the proposed procedure we compute the mean
squared error (MSE) for each simulated dataset j (j = 1,..., M), as

1 n
MSEj:EZ(g(xi)_/g\j(xi))Qa J=1...,M,
i=1
with M = 1000. We ran our simulation experiment on an IBM x3650 M4 Server
with 2 Intel Xeon E5-2670 processors and 128 GB of RAM Quadro 6000. The total
computation time was 16 hours, 56 minutes and 5.13 seconds.

Figures 9 to 11 present the boxplots of M SE in the logarithmic scale for sev-
eral contamination percentages considering the P-splines estimation under normal,
Student-¢ and slash distributions. From these plots it is clear that when we are
in presence of outliers, the proposed procedure produces better estimates. In fact
our findings are very similar to those reported by Tharmaratnam et al. (2010).
However, it should be noted that the penalized spline estimator under heavy-tailed
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(a) (b)

FIGURE 8. Fitted curve for the Cantoni and Ronchetti (2001) test
function (a) without outliers and (b) with 25% of outliers from
N(20,2%). True function sin(27(1 — x)?) (solid line), fitted curve
using normal errors (penalized LS-estimation) (dotted) and assum-
ing Student-t model with v = 1 (dashed).

normal

Student-¢

slash

=}
og(MSE)

10g(MSE)

T T T T T
0% st 10% 25% 0% 0%

T T T
% 10% 25% 0% 0%

T
5%

T
10% 250

FIGURE
slash (v

Boxplot of MSE using normal, Student-¢ (v = 1) and

%) models considering several contamination levels for

11

the Cantoni and Ronchetti (2001) test function.

normal Student-t slash
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FIGURE 10. Boxplot of MSE using normal, Student-¢ (v = 2) and
slash (v = 1) models considering several contamination levels for
the Cantoni and Ronchetti (2001) test function.
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normal Student-t slash
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FIGURE 11. Boxplot of MSE using normal, Student-t (v = 4) and
slash (v = 2) models considering several contamination levels for
the Cantoni and Ronchetti (2001) test function.

distributions remains stable as the proportion of contamination increases only for
small (and fixed) degrees of freedom. In our simulation experiment the penalized
spline estimator’s MSEs grows rapidly after 10% of outliers for degrees of freedom
as small as 4 or 2, for the Student-¢ or slash distributions, respectively. In fact, as
is discussed by Lange et al. (1989) modeling with distributions with heavier tails
than the normal one is not the panacea for all robustness problems. In particular
we can expect difficulties in P-splines under scale mixtures of normal distributions
for data with extreme outliers.
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