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Abstract

The codispersion coefficient quantifies the association between two spatial processes for a
particular direction (spatial lag) on the two-dimensional space. When this coefficient is com-
puted for many directions, it is useful to display those values on a single graph. In this article,
we suggest a graphical tool called a codispersion map to visualize the spatial correlation be-
tween two sequences on a plane. We describe how to construct a codispersion map for regular
and non-regular lattices, providing algorithms in both cases. Three numerical examples are
given to illustrate how useful this map can be to detect those directions for which the codis-
persion coefficient attains its maximum and minimum values. We also provide the R code to
construct the codispersion map in practice.

Keywords and Phrases: spatial process, spatial association, codispersion coefficient, semi-variogram
estimation.

1 Introduction

Computational and graphical tools recently developed in spatial statistics help to visualize spatial
patterns, correlations and several other trends on a low dimensional space. For example Genton
and Ruiz-Gasen (2010) introduce the hair-plot to visualize influential observations in dependent
data, while Kahle and Wickham (2013) developed a tool called ggmap which combines the spa-
tial information of static maps from Google Maps, OpenStreetMap, Stamen Maps or CloudMade
Maps with the layered grammar of graphics implementation of ggplot2. On the other hand,
the increasing number of packages and software (Anselin, 2006) that allow one to perform spa-
tial analysis enhance the number of researchers getting involve in different aspects of the spatial
modelling.

The assessment of the correlation between two spatial processes has been tackled from two
different perspectives. First, the problem is assessed from an hypothesis testing approach, mainly
transforming the t test in a suitable way to include the spatial information available for each pro-
cess (Clifford et al, 1989; Dutilleul, 1993). Recently a computational method based on permu-
tations and smoothing of the original variables has been suggested in the context of biodiversity
(Viladomat et al, 2014). The second way to assess the association between two spatial processes is
considering coefficients of spatial association which have been increasingly used in several applied
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areas, such as hydrology and soil sciences (Goovaerts, 1997; Pringe and Lark, 2006; Córdoba et
al, 2013). In particular, the codispersion coefficient, first introduced by Matheron (1965), has been
receiving attention in recent years from researchers because it allows the quantification of the exist-
ing spatial association between two processes in a particular direction (Ojeda et al, 2012). Besides
the codispersion coefficient, other coefficients of association and hypothesis testing procedures
have been implemented computationally (Osorio and Vallejos, 2014) which in practice facilitates
the analysis of correlation between two real spatial sequences. From a theoretical perspective,
some subjects have been studied. For example, under precise conditions, Rukhin and Vallejos
(2008) found the limiting distribution of the sample codispersion coefficient for spatial autore-
gressive processes. Some extensions of these results were studied by Vallejos (2008) and Vallejos
(2012) in a time series context. Cuevas et al. (2013) proposed a Nadaraya-Watson type estimator
of the codispersion to assess the spatial association between two processes from a nonparametric
point of view. Asymptotic expressions for the bias and variance of these estimations were es-
tablished, as well as consistency. Bandwidth rules for the semi-variogram and cross-variogram
were also provided. In image processing Vallejos (2012) and Ojeda et al (2012) explored the
codispersion coefficient as a measure of similarity between digital images. Recently, Vallejos et
al (2014) extended the codispersion coefficient for a multivariate process. Asymptotic properties
were established and an image classification method for multispectral images was proposed.

In this article the problem of how to visualize the codispersion coefficient when several spatial
lags are considered is addressed. Based on the good performance of the codispersion coefficient
to capture the hidden correlation in specific directions we suggest a graphical display called codis-
persion map. Similar type of maps have been suggested for the semi-variogram and discussed
extensively by Isaaks and Srivastava (1989). A cross-variogram map has been developed and im-
plemented in the R package gstat (Pebesma, 2004). Our proposal is described for regular and
non-regular lattices. In both cases the algorithms used to construct the codispersion map are out-
lined. The computation and visualization of the map was implemented in the R language. The R
code associated with the suggested algorithms is also provided. Three examples with real data are
described. The first one deals with the Murray smelter site dataset in an industrially contaminated
area in Utah, USA. The second example deals with a forest dataset collected in the south of Chile.
The third example illustrates the capability of the codispersion coefficient to assess the similarity
between digital images. Finally, some remarks and an outline of topics to be addressed in future
research are given.

2 The Codispersion Coefficient

Let X(s) and Y (s) be two spatial processes defined for s ∈ S ⊂ Rd, d ≥ 2 ∈ N. Here, we
restrict our study to those processes that are intrinsically stationary on the plane (d = 2) and for
which the semi-variogram of X(·) can be defined as

γX(h) =
1

2
E[(X(s)−X(t))2], h = t− s

and similarly for Y (·). In geostatistics, the cross-variogram between the processes X(·) and Y (·)
defined as

γX,Y (h) = E[(X(s)−X(s+ h))(Y (s)− Y (s+ h))]

has been widely used in several applications (Chilès and Delfiner, 1999) In particular, the cross-
variogram helps to define a coefficient of spatial association in the direction h ∈ R2, called the
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codispersion coefficient, which is given by

ρX,Y (h) :=
γX,Y (h)√

E[(X(s)−X(s+ h))2]E[(Y (s)− Y (s+ h))2]
, s ∈ Dh,

where Dh = {s ∈ D : s+h ∈ D}. Now, consider the process Z(s) = X(s) + Y (s), s ∈ S. We
emphasize the existing relationship between the semi-variograms of X(·), Y (·) and X(·) + Y (·)
and the cross-variogram γX,Y (h), noting that

γZ(h) =
1

2
E[(Z(s)− Z(s+ h))2]

=
1

2
E[(X(s) + Y (s)−X(s+ h)− Y (s+ h))2]

=
1

2

(
E[(X(s)−X(s+ h))2] + 2E[(X(s)−X(s+ h))(Y (s)− Y (s+ h))]

+E[(Y (s)− Y (s+ h))2]
)

= γX(h) + γX,Y (h) + γY (h),

then
γX,Y (h) = γX+Y (h)− γX(h)− γY (h). (1)

There are several ways to estimate the semi-variogram, and the method used in this work assumes
isotropy. In the following, we suppose that Sloc = {s1, . . . , sn} ⊂ S ⊂ R2 is the set of locations
on the plane for which the realization of the process is available. In practice, it is difficult to obtain
pairs of the form (si, sj), such that ‖si − sj‖ = ‖h‖ for an arbitrary h. This consideration is
easily surpassed considering the set of all pairs (si, sj) located in a certain region with a Euclidean
distance between the upper and lower bounds. i.e., a restriction of the form h

(l)
k < ‖si−sj‖ ≤ h(u)k

is imposed for k = 1, . . . , B. Thus, we can precisely define the set Nk as

Nk = {(si, sj) : ‖si − sj‖ ∈]h(l)k , h
(u)
k ]}, k = 1, . . . , B. (2)

In practice, these estimations of the semi-variogram are obtained as fixed values of B. For in-
stance, the geoR package (Ribeiro and Diggle, 2001) considers by default B = 13. To obtain the
values that determine the sets Nk, it is necessary to obtain

dmax = max
(si,sj)∈Sloc

{‖si − sj‖}.

Given that dmax divides the interval ]0, dmax] into B sub-intervals, we can define the center of
each sub-interval, hk, as

hk =
k dmax

B
, k = 1, . . . , B. (3)

Then, the symmetric intervals with respect to the center hk are the following:

]h
(l)
k , h

(u)
k ] =

]
hk −

dmax

B
, hk +

dmax

B

]
, k = 1, 2, . . . , B.
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This is the standard procedure to compute the empirical semi-variogram γ̂X(hk), as defined
through

γ̂X(hk) =
1

2|Nk|
∑

(i,j)∈Nk

(X(si)−X(sj))
2, (4)

where hk is as in (3), and Nk is as defined in (2). Similarly, we can estimate the codispersion
coefficient by emulating the estimation of the semi-variogram. If the processes X(s) and Y (s)
are defined over a set S ⊂ R2, Sloc = {s1, . . . , sn} ⊂ S is the set of locations on the space where
both processes are observed, h = (h1, h2) ∈ R2 and Sh = {s ∈ Sloc : s + h ∈ Sloc}, then the
empirical codispersion coefficient is

ρ̂X,Y (h) :=

∑
s∈Sh

(X(s)−X(s+ h))(Y (s)− Y (s+ h))√∑
s∈Sh

(X(s)−X(s+ h))2
∑
s∈Sh

(Y (s)− Y (s+ h))2
. (5)

The estimator of the codispersion given in (5) can be computed for a general fixed spatial lag
h. This computation can be difficult if the number of points in Sh is small or if Sh is an empty
set. We emphasize that the empirical estimator of the codispersion makes real sense when the
processes are defined on a finite rectangular grid in the two-dimensional space that corresponds to
the assessment of the similarities between two digital images Ojeda et al (2012). The similarities
between the images provided by the codispersion coefficient are not necessarily concerned with
the similarities between the shapes or textures present in both images, but rather, by their (possibly
hidden) correlations.

For a general estimation of the codispersion coefficient, the same considerations as used for
the semi-variogram can be assumed. Then, the omnidirectional estimation of the codispersion
becomes

ρ̂X,Y (hk) :=

∑
(si,sj)∈Nk

(X(si)−X(sj))(Y (si)− Y (sj))√ ∑
(si,sj)∈Nk

(X(si)−X(sj))2
∑

(si,sj)∈Nk

(Y (si)− Y (si))2
,

where hk and Nk are as in (4). A third estimation of the codispersion can be formulated by
considering the expression for the cross-variogram, as given by (1). Then, a plug-in estimator of
the codispersion that depends only on the semi-variogram estimations is given by

ρ̂X,Y (hk) =
γ̂X+Y (hk)− γ̂X(hk)− γ̂Y (hk)√

γ̂X(hk)γ̂Y (hk)
. (6)

In order to illustrate how in some cases the information provided by the codispersion coefficient is
related to that of the linear correlation coefficient, Table 1 lists several cases where the codispersion
can be written as a product between the correlation coefficient associated with the errors and a
constant depending on the parameters of models. In all cases the codispersion coefficient was
derived assuming that the error processes ε1(s) and ε2(s) are white noise sequences showing
variances σ2 and τ2 respectively and the covariance structure given by
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cov[ε1(t), ε2(s)] =

{
ρστ, t = s,

0, otherwise,
(7)

where |ρ| ≤ 1. As a result, the codispersion coefficient which can be interpreted as a linear
correlation coefficient between spatial increments of both processes can also be seen as an adapted
(corrected) version of the correlation coefficient between the white noise sequences as is shown
in Table 1. The coefficients c1, . . . , c6 incorporate the spatial or temporal association between the
processes that is contained in the parameters of the models.

3 The Codispersion Map

Similar to the variogram map described by Isaaks and Srivastava (1989), this codispersion map
is a set of estimations for the codispersion coefficient in many different directions on the plane.
The main goal is to obtain a summary of the codispersion values for angles belonging to the
interval [0, π] and radius varying on the range ]0, dmax], where dmax depends on the type of spatial
data (defined on rectangular or general grids). In other words, plotting the codispersion map
summarizes the information about the spatial association between two sequences in a radial way
on the plane circumscribing the map in a semisphere of radius dmax.

3.1 The Map for Spatial Data Defined on a General Lattice

The construction of the codispersion map for spatial data, as defined on a general grid, can be
summarized by three steps. Step 1 consists of selecting the maximum distance dmax. The second
step involves the definition of the points hk where the estimations will be evaluated; these points
are chosen uniformly on the interval ]0, dmax]. The third step consists of choosing angles from the
interval [0, π] to fix the directions that will be used in the estimation. In practice, for each of the
selected directions, the estimation of the semi-variograms are carried out for the distances hk, as
previously selected. The Algorithm 3.1 reflects the computational procedure to estimate the values
of the codispersion and the plotting procedure to yield the codispersion map, as based on Equation
(6). It should be stressed that, in Algorithm 3.1, the notation used for the estimation of the semi-
variogram is γ̂X(h[k], α[i]), highlighting the dependency of the estimated semi-variogram on the
angle. This is crucial to restrict the search of the points belonging to each Nk. The computational
implementation of the semi-variograms relies upon the numerical computations provided by the
R package geoR (Ribeiro and Diggle, 2001). Once the estimations in all defined directions are
available, the algorithm fits a rectangular grid of the estimations, and bilinear interpolations are
generated to fill that rectangular grid. The R code to generate such a codispersion map can be
found in the Appendix.

3.2 The Map for Spatial Data Defined on a Regular Grid

In the case of a rectangular grid, the estimation of the codispersion coefficient is much more
simple. The implemented estimation is based on Equation (5). The domain is the set of locations
{1, . . . , n} × {1, . . . ,m}, where n and m, respectively, denote the numbers of rows and columns
of the grid. The simplicity arises from the fact that the distances between two contiguous points
are always the same. The possible directions considered are those that satisfy h = (h1, h2), with
h1 ∈ {−m + 1, . . . ,m + 1}, h2 ∈ {0, . . . , n − 1}. To ensure a sufficient number of differences
in a particular direction, we imposed the restriction |h1|, h2 ≤ min(n,m)/3. The observations
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Algorithm 3.1: Algorithm to construct the codispersion map for spatial data defined on
non-rectangular grids.

input : Two spatial sequences X and Y and the corresponding set of coordinates Sloc
output: A codispersion map between the variables X and Y

1 begin
2 dmax/2←− Half of the maximum distance among the locations
3 B ←−13
4 h←− {dmax/B, 2dmax/B, . . . , dmax}
5 α←− {0, 0. 01, 0. 02, . . . , π}
6 circ = (xcirc, ycirc)←− Cartesian coordinates for the pairs (h[k], α[i]),

k = 1, . . . , B, i = 1, . . . , |α|
7 z ←− Array of length |α| ·B, where |α| is the length of α
8 for i = 1, 2, . . . , |α| do
9 for k = 1, 2, . . . , B do

10 z[k + (i− 1)B]←− γ̂X+Y (h[k], α[i])− γ̂Y (h[k], α[i])− γ̂X(h[k], α[i])
11 end
12 end
13 return plot(interpolate(xcirc, ycirc, z, n)), display the interpolated cells in an

inscribed circumference on a semicircle of diameter n
14 end

X(sk) and Y (sk), k = 1, . . . , nm, are described in the matrix notation used for the images. i.e.,
X(j, i) and Y (j, i), (j, i) ∈ {1, . . . , n} × {1, . . . ,m}. Contrary to the usual convention, we used
the index j for the row and i for the column, and the position (1, 1) is located at the top left corner
of the grid. Given the observations of the processes X(·) and Y (·) on a finite rectangular grid
of size n ×m, the observations using the new notation are X(j, i) and Y (j, i). Considering the
direction h = (h1, h2) with |h1| ≤ m− 1 y 0 ≤ h2 ≤ n− 1, the estimator of the codispersion (5)
can be written as follows:

ρ̂X,Y (h) =

∑
(j,i)∈Sh

(X(j, i)−X(j + h1, i+ h2))(Y (j, i)− Y (j + h1, i+ h2))√ ∑
(j,i)∈Sh

(X(j, i)−X(j + h1, i+ h2))2
∑

(j,i)∈Sh

(Y (j, i)− Y (j + h1, i+ h2))2
,

(8)
where Sh = {(j, i) : (j + h1, i+ h2) ∈ Sloc}. We recall that we are assuming a positive axis in
the vertical downward direction. The Algorithm 3.2 computes the codispersion map in the fashion
described above. From a practical point of view, the algorithm was written in C and can be run
from R using the interface .Call. Thus, the R code is simply a wrapper that allows us to run the
routines developed in C internally. The R and C routines and directions for compiling these files
can be found on the website http://spatialpack.mat.utfsm.cl/codispmap/.

4 Numerical Examples

In this section, three examples are presented to illustrate the use of the codispersion map in prac-
tical applications for both spatial data defined in a rectangular grid and spatial data defined on a
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Algorithm 3.2: Algorithm to construct the codispersion map for spatial data defined for
rectangular grids

input : Two matrices X and Y
output: A codispersion map between the variables X and Y

1 begin
2 n←− Number of rows
3 m←− Number of columns
4 hmax ←− Integer less or equal than one third of the minimum between n and m
5 h←− Set the directions to be consider in the map
6 for i ∈ {1, . . . , nrows(h)} do
7 z[h[i, 1], h[i, 2]]←− ρ̂X,Y (h[i, 1], h[i, 2])
8 end
9 return plot(z)

10 end

general lattice. The first two datasets are defined on non-rectangular grids, and the third example
illustrates the similarity between images defined on a finite rectangular grid in the plane.

4.1 The Murray Smelter Site Dataset

The dataset consists of soil samples collected in and around the vacant industrially contaminated
Murray smelter site (Utah, USA). This area was polluted by airborne emissions and the placement
of waste slag from the smelting process. A total of 253 locations were included in the study, and
soil samples were taken from each location. Each georeferenced sampling quantity is a pooled
composite of four closely adjacent soil samples, for which the levels of the heavy metals, arsenic
(As) and lead (Pb), were measured. A complete description of the Murray smelter site dataset can
be found in Griffith (2002) and Griffith and Paelinck (2011). The attributes As and Pb for each
location are shown in Figure 1.

Figure 1: Locations and levels for As and Pb in the Murray smelter site dataset.
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In Figure 2(a), we observe the values of the distances and directions for which the codispersion
coefficient has been computed. Spatially, we can see the maximum and minimum values of the
codispersion in Figure 2(b). The codispersion map for the circular grid considers distances up to
3000 meters. There is no clear pattern for any particular direction; however, the highest values of
the codispersion are attained for the middle range distances. The correlation coefficient between
As and Pb is r = 0.5893. Looking at the codispersion map, we observe a weak circular pattern
of high values of the codispersion for distances ranging from 1000 to 2000 meters. This behavior
can also be observed in the bubble charts displayed in Figure 3. Although we do not have an
explanation for this, types of spatial associations we observe from a codispersion map are difficult
to be obtained by the usual exploratory data analysis techniques.
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Figure 2: (a) Directions for which Algorithm 3.1 computes the values of the codispersion. (b)
Codispersion map for the Murray smelter site dataset.
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Figure 3: (a) Bubble chart for the levels of As (b) Bubble chart for the levels of Pb.
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4.2 Forest Data

Pinus radiata is one of the most widely planted species in Chile and can thrive on a wide array of
soil types and in a variety of regional climates. Two important measures of plantation development
are the dominant tree height and the basal area. The study site was located in the sector Escuadrón,
south of Concepción in the southern portion of Chile (36◦ 54’ S, 73◦54’ O), and has an area of
1244.43 hectares. In addition to the more mature stands, we were also interested in the area
containing younger (i.e., four years old) stands of Pinus radiata. This area had an average density
of 1600 trees per hectare. The basal area and dominant tree height at the years of the plantation’s
establishment (1993, 1994, 1995, and 1996) were used to represent the stand attributes. The two
variables we employed were obtained from 200 m2 circular sample plots and point-plant sample
plots. For the latter type of sample, four quadrants were established around the sample point;
the four closest trees in each quadrant (16 trees in total) were then selected and measured in a
clockwise direction. The samples were located systematically using a mean distance of 150 meters
between samples. The total number of plots available for this study was 468 (Figure 4(a)). Figure
4 shows a simple bilinear interpolation and the corresponding contours for the two variables.
Algorithm 3.1 was used to generate the codispersion map between the tree basal area and the tree

(a) (b) (c)

Figure 4: (a) Locations; (b) Bilinear interpolation of the tree basal area; (c) Bilinear interpolation
of the tree height.

height. The resulting plot is shown in Figure 5. In general it can be seen that the association is
high in all directions. In particular we observe the highest values (0.8) of the codispersion on the
vertical direction (90◦) from 2000 meters up. We also observe a circular pattern on the top part
of the codispersion map for angles between 45 and 135 degrees. These codispersion values are
aproximately 0.75.

Unexpectedly, the smallest values of the codispersion are associated with the smallest dis-
tances (blue values in the center of the graph). This can happen often for forest variables due
to the topography of the terrain which could significantly affect the spatial association of points
that are very close one to each other. Another possible reason for this is a poor estimation of the
codispersion coefficient for small distances, which can happen for processes defined on regular
grids.
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Figure 5: Codispersion map for the Pinus radiata dataset.

4.3 Image Similarity

In this example, we show the capacity of the codispersion coefficient to capture different levels
of similarity between two images, considering different directions in the images. This subject
was first studied by Ojeda et al (2012), who concluded that the codispersion coefficient was able
to capture the hidden spatial correlations between two images in a particular direction, a feature
not commonly assessed by other coefficients of similarity between images. This example also
elucidates the difference between the classical association provided by the correlation coefficient
and the spatial association provided by the codispersion coefficient. In order to accomplish this
task, an original image (Lenna) of size 512×512 (Figure 6(a)) was taken from the USC-SIPI image
database http://sipi.usc.edu/database/. This image was processed by the Algorithm
4.1 described below, which transforms the original image in one image with a clear pattern in the
direction (1, 1). The image produced by the Algorithm 4.1 is displayed in Figure 6(b). It should
be stressed that the correlation coefficient between the images shown in Figure 6(a) and (b) is
rI,W = 0.6909202, whereas the codispersion coefficient for h = (1, 1) is ρ̂I,W (1, 1) = 1. These
results are not surprising because a detailed inspection of the pseudo-code displayed in Algorithm
4.1 shows that the differences needed for the computation of the codispersion coefficient take
the form W [i, j] − W [i + h1, j + h2], but W [i + h1, j + h2] = W [i, j] − D, where D is the
difference associated with pixel (i, j) in the original image. i.e., D = I[i, j] − I[i + h1, j + h2].
Thus, in the original and transformed images, the sums of these differences are exactly the same,
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producing a codispersion coefficient equal to 1. The introduction of the variable W (line 5 in
Algorithm 4.1) as a normal random variable is arbitrary and generates one type of transformed
image into the direction (1, 1) for the purposes of this illustration. Using different distributions
forW will generate other types of transformed images. In addition, salt and pepper contamination
noise was added to the original image shown in Figure 6(a) with percentages of contamination of
1%, 5%, 10%, and 25%, respectively. Then Algorithm 4.1 was applied to these blurred images
producing the images shown in Figure 6(c)-(f). The transformation of the original image without
contamination is displayed in Figure 6(b). Visually it is possible to observe a degradation of the
original patterns as effect of the percentage of contamination. Moreover, the sample correlation
coefficients between the original and contaminated images are 0.684555, 0.645544, 0.595579, and
0.517395, respectively, exhibiting a clear decreasing pattern as contamination increases.

Algorithm 4.1: Algorithm to transform an image into the direction h = (1, 1)

input : An image I of size n×m
output: An image W of size n×m

1 for i = 1, 2, . . . , n do
2 for j = 1, 2, . . . ,m do
3 if (i == 1) or (j == 1) then
4 W [i, j]←− Simulation of a standard normal random variable;
5 end
6 else
7 W [i, j]←−W [i− 1, j − 1]− I[i− 1, j − 1] + I[i, j]
8 end
9 end

10 W ←− W−minW
maxW−minW ;

11 return W;
12 end

In this case, the codispersion map yielded by the application of Algorithm 3.2 to the images
shown in Figure 6 produces valuable information highlighting the directional features of the codis-
persion coefficient that cannot be accounted for by other coefficients. This occurrence can clearly
be seen in the codispersion map displayed in Figure 7(a), where there is an evident pattern asso-
ciated with the perfect spatial association in the 45◦ line, corresponding to the transformation of
the original image (Figure 6(a)) in the direction h = (1, 1), as expected. In Figure 7(b)-(e) are
displayed the codispersion maps between the original and contaminated images. It is evident that
the existing spatial association in the direction (1,1) between the original and transformed images
is corrupted by the effect of the contamination.

5 Conclusion

In this paper, we have introduced a new graphical tool called the codispersion map to visualize
the spatial associations between two spatial processes on a plane. Algorithms for the construction
of such a map were discussed for processes defined on rectangular and general grids. The R code
in both cases has also been provided. The foundations of these computations are based on the
evaluation of the codispersion coefficients at specific points on a suitable grid. In light of the real
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Figure 6: (a) Original image (Lenna); (b) Transformed image into the direction h = (1, 1); (c)
Image (a) with 1% of salt and pepper noise transformed by Algorithm 4.1; (d) Image (a) with 5%
of salt and pepper noise transformed by Algorithm 4.1; (e) Image (a) with 10% of salt and pepper
noise transformed by Algorithm 4.1; (f) Image (a) with 25% of salt and pepper noise transformed
by Algorithm 4.1.

data examples shown in Section 4, we conclude that the codispersion map is able to account for the
hidden spatial associations between two processes for specific directions. This feature highlights
the codispersion coefficient and its graphical developments as useful tools to be used in future
practical applications.

We view the work described in this paper as only the beginning of a large project with several
related problems to be tackled in the future. The study of a measure of similarity between images
based on the codispersion coefficient seems to be an interesting problem to be explored in further
research, drawing from Brunet et al (2012) and Wang et al (2004). The construction of a panel
of codispersion maps comparing the associations among more than two spatial processes can be
constructed based on Vallejos et al (2014). This codispersion map will be included in future
versions of the R package SpatialPack.
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Figure 7: Codispersion maps between the pairs of images in Figure 6. (a) Codispersion map be-
tween images (a) and (b); (b) Codispersion map between images (a) and (c); (c) Codispersion map
between images in (a) and (d); (d) Codispersion map between images (a) and (e); (e) Codispersion
map between images (a) and (f).

A Appendix

R Code to Generate the Codispersion Map for Nonrectangular Grids

codisp.map <-
function(x, y, coords, nclass = 13, ncell = 40, plot.it = TRUE)
{

require("akima")
require("fields")
require("geoR")
rho <- function(x, y, uvec, max.dist, angle)
{

z <- as.geodata(cbind(x$coords, x$data + y$data))
nz <- variog(z, uvec = uvec, max.dist = max.dist,

direction = angle, messages = FALSE)
dx <- variog(x, uvec = uvec, max.dist = max.dist,

direction = angle, messages = FALSE)
dy <- variog(y, uvec = uvec, max.dist = max.dist,

direction = angle, messages = FALSE)
rho <- .5 * (nz$v - dx$v - dy$v) / sqrt(dx$v * dy$v)
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}

x <- as.geodata(cbind(coords, x))
y <- as.geodata(cbind(coords, y))
dmax <- .5 * max(dist(coords))
angles <- seq(from = 0, to = pi, by = 0.01)
nangles <- length(angles)
uvec <- seq(from = 0, to = dmax, length = nclass + 1)[-1]

xcirc <- 0
ycirc <- 0

for (i in seq_len(nclass)) {
xcirc[(nangles*(i-1)+1):(nangles*i)] <- seq(-uvec[i],

uvec[i], length = nangles)
ycirc[(nangles*(i-1)+1):(nangles*i)] <- sqrt(uvec[i]ˆ2 -

xcirc[(nangles*(i-1)+1):(nangles*i)]ˆ2)
}
z <- matrix(0, nrow = nangles, ncol = nclass)
for (i in seq_len(nangles))

z[i,] <- rho(x, y, uvec = uvec, max.dist = dmax, angle = angles[i])
z <- as.vector(z)
xl <- seq(min(xcirc), max(ycirc), length=ncell)
yl <- seq(min(ycirc), max(ycirc), length=ncell)

if (plot.it) {
par(pty = "s")
image.plot(interp(xcirc, ycirc, as.vector(z), xo = xl,yo = yl),
col = topo.colors(256), xlab = "x", ylab = "y")
title(main = "Codispersion Map")

}

invisible(list(xcirc = xcirc, ycirc = ycirc, z = z))
}
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