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Abstract

The Grubbs’ measurement model is frequently used to comparing several measuring
devices. It is common to assume that the random terms have a normal distribution.
However, such assumption makes the inference vulnerable to outlying observations
whereas scale mixtures of normal distributions have been an interesting alternative
to produce robust estimates keeping the elegancy and simplicity of the maximum
likelihood theory. The aim of this paper is to develop an EM-type algorithm for the
parameter estimation and to use the local influence method to assessing the robust-
ness aspects of these parameter estimates under some usual perturbation schemes.
In order to identify outliers and to criticize the model building we use the local
influence procedure in a study to compare the precision of several thermocouples.

Key words: Grubbs’ model; Heavy-tailed distributions; Outliers; Q-displacement;
Regression diagnostics.

1 Introduction

The problem of comparing the precision and accuracy of different measur-
ing instruments may appear in various scientific applications like engineering
(Grubbs, 1948, 1973) and medicine (Barnett, 1969). Taking measurements of
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the same unknown characteristic x from different individuals or experimental
units has been the usual way for comparing the instruments. Wich may dif-
fer in some aspects such as cost, speed and convenience. The relative quality
in the measurements is evaluated considering the precision and bias of the
different instruments.

The assessment of robustness aspects of the parameter estimates in statistical
models has been an important concerning of various researchers in the last
decades. The deletion methodology, which consists in studying the impact on
the parameter estimates after dropping individual observations, is probably
the most employed technique to detect influential observations (see, for exam-
ple, Cook and Weisberg, 1982 and Chatterjee and Hadi, 1988). Nevertheless,
the local influence procedure (Cook, 1986), that investigates the influence of
small perturbations in the model/data on the parameter estimates, has re-
ceived an increasing attention in the last 20 years, mainly due to its flexibility
in constructing different kinds of graphics and its applicability in various sta-
tistical models (see discussion in Cook, 1997). In particular, Galea, Bolfarine
and de Castro (2002) and Lachos, Vilca and Galea (2007) applied the method-
ology in normal comparative calibration and Grubbs’ models, notifying under
some usual perturbation schemes the well known lack of robustness of the
least-squares estimates against outlying observations.

Several methodologies have been proposed to attenuate the influence of out-
lying observations on the parameter estimates under normality, such as mod-
ifications of the least-squares methodology (see, for instance, Huber, 1981).
Other approaches that assume heavy-tailed error distributions for which the
maximum likelihood estimates appear to be robust against extreme observa-
tions have been proposed (see, for example, Galea, Bolfarine and Vilca, 2005).
In this work, we will assume scale mixtures of normal distributions (Andrews
and Mallows, 1974) for the accommodation of extreme and outlying obser-
vations in the Grubbs’ model. Properties of distributions in this class, such
as Student-t, power exponential and contaminated normal may be found in
Andrews and Mallows (1974) and Lange and Sinsheimer (1993). In this pa-
per scale mixtures of normal distributions are assumed for the Grubbs’ model
and the hierarchical representation proposed by Pinheiro, Liu and Wu (2001)
is considered. Our aim is to apply the local influence method in the Grubbs’
model under heavy-tailed distributions in order to assess the influence of minor
perturbations on the model/data, our results are generalizations of the results
obtained by Lachos, Vilca and Galea (2007). The rest of the paper is organized
as follows. In Section 2 some inferential aspects are discussed and an EM-type
algorithm is developed for the parameter estimation. Section 3 introduces the
local influence methodology (Cook, 1986 and Zhu and Lee, 2001). The nor-
mal curvature for some usual perturbation schemes is derived in Section 4.
The methodology is illustrated in Section 5 in which Grubbs’ models under
normal and scale mixtures of normal distributions are compared according to
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the robustness aspects of the maximum likelihood estimates. Finally, some
concluding remarks are given in Section 6.

2 Model description

Grubbs (1948, 1973, 1983) proposes a linear model for comparing p different
instruments, in which the characteristic xi of the ith experimental unit is
measured once by all the p instruments. The model assumes the form

Yij = αj + xi + εij, i = 1, . . . , M and j = 1, . . . , p, (1)

where Yij denotes the measurement of the jth instrument for the ith exper-
imental unit and αj is called additive bias. The measurement errors εij are
assumed to be independent of the random variables x1, . . . , xM . In addition,
one has that xi and εij are mutually independent and distributed according
to xi ∼ N(µx, φx) and εij ∼ N(0, φj).

In order to allow model (1) be identifiable we may consider α1 = 0 (see, for ex-
ample, Shyr and Gleser, 1986; Bedrick, 2001 and Christensen and Blackwood,
1993). However, in this work, we will assume the transformation zi = xi− µx,
i = 1, . . . , M (Theobald and Mallison, 1978) so that the Grubbs’ model is
expressed in the alternative form

Y i = µ + 1zi + εi, i = 1, . . . , M, (2)

where Y i = (Yi1, . . . , Yip)
T , µ = (µ1, . . . , µp)

T and εi = (εi1, . . . , εip)
T with zi

denoting a random variable normally distributed of mean zero and dispersion
parameter φx.

Christensen and Blackwood (1993) reported 64 sets of simultaneous measure-
ments for temperature obtained by five thermocouples previously used, with
the aim of examining their precision and exactitude after one or more ther-
mocouples had sustain certain damage. Let Yij represent the measurement
for the temperature by the jth thermocouple for the ith item, i = 1, . . . , 64;
j = 1, . . . , 5, and these data are plotted in Figure 1. The plot shows several
measurements as potential outliers.

It is well known that models developed under the assumption of normality are
susceptible to outlying observations. The Grubbs model given in (2) considers
two sources of variation, which may generate outliers in the error component
as well as in the latent variable component (see, for instance, Pinheiro, Liu and
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Fig. 1. Means and standard deviations of the measurements of the thermocouples.
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Fig. 2. Index plots of the Mahalanobis distances under normality.

Wu, 2001). In order to identify such observations we consider the distances

Ui = (Y i − µ)T (D(φ) + φx11
T )−1(Y i − µ),

Uεi
= εT

i D−1(φ)εi, and Uzi
= z2

i /φx,

where εi = Y i−µ− zi1 for i = 1, . . . , 64 and D(φ) = diag(φ1, . . . , φp). Under
the assumption of normality one has that Ui ∼ χ2

p, Uεi
∼ χ2

p and Uzi
∼ χ2

1.
Since E(Ui) = p, E(Uεi

) = p and E(Uzi
) = 1, Pinheiro, Liu and Wu (2001)

proposed the quantities Ûi/p, Ûεi
/p and Ûzi

to identify outlying observations.
These statistics have expected value equals to one. The parameter estimates
under normal error (standard errors in parenthesis) are given in the first col-
umn of Table 1. From Figure 2 we can notice observations 20, 27, 36, 45, 46,
57, 60 and 62 as possible outliers. In the sequel we introduce the class of scale
mixtures of normal error models to accommodate outlying observations.
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The class of scale mixtures of normal distributions (Andrews and Mallows,
1974) has been applied in the context of regression models (see, for instance,
Lange and Sinsheimer, 1993 and Liu, 1996) as well as in linear mixed mod-
els (Rosa, Padovani and Gianola, 2003, 2004) for obtaining robust estimates
against outlying observations. To define this class, suppose the m-dimensional
vector Y written as

Y
d
= µ + κ1/2(V )W , (3)

then we say that Y follows a scale mixtures of normal distributions of position
parameter µ ∈ Rm and definite positive matrix Λ, where W ∼ Nm(0,Λ),
V is a positive random variable, named mixture variable, with distribution
H(v; ν) independent of W indexed by the parameter vector ν, whereas κ(·) is
a strictly positive function which is associated to the mixture variable V . Here
d
= denotes equivalence of distributions. It is easy to see that the conditional
distribution (Y |V = v) ∼ Nm(µ, κ(v)Λ). In addition, the marginal density of
Y takes the form

f(y) = |2πΛ|−1/2
∫ ∞

0
{κ(v)}−m/2 exp{−1

2
κ−1(v)u} dH, (4)

where u = (Y −µ)TΛ−1(Y −µ). When the density of Y assumes the form (4)
we will denote Y ∼ SMNm(µ,Λ; H). The class of scale mixtures of normal
distributions presents similar properties of the normal distribution, is simple
to work with it and allows the development of robust procedures for the pa-
rameter estimation. Examples of distributions in this class may be found, for
instance, in Lange and Sinsheimer (1993).

Based on the suggestion of Pinheiro, Liu and Wu (2001), we will introduce
scale mixtures of normal distributions in the Grubbs’ model defined in (2), by
considering the following hierarchical structure:

Y i|zi
ind∼ SMNp(µ + 1zi, D(φ); H),

zi
ind∼ SMN(0, φx; H), i = 1, . . . , M,

or, equivalently, as

Y i|zi, vi
ind∼ Np(µ + 1zi, κ(vi)D(φ)), zi|vi

ind∼ N(0, κ(vi)φx),

vi
ind∼ H(vi; ν), i = 1, . . . , M, (5)

where D(φ) = diag(φ1, . . . , φp).

Let θ = (µT ,φT , φx)
T be the parameter vector of interest. We will apply an

EM-type algorithm (Meng and Rubin, 1993; see also McLachlan and Krish-
nan, 1997) for the parameter estimation by assuming that (zT ,vT )T with
z = (z1, . . . , zM)T and v = (v1, . . . , vM)T are not observable. Thus, the
vector of complete data will be given by Y c = (Y T ,zT ,vT )T , where Y =
(Y T

1 , . . . , Y T
M)T corresponds to the vector of observable responses for the M
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individuals. The log-likelihood function for the complete data will be denoted
by L(θ|Y c) =

∑M
i=1 Li(θ|Y c), where

Li(θ|Y c) = −1
2
log |D(φ)| − κ−1(vi)

2
(Y i − µ− 1zi)

T D−1(φ)(Y i − µ− 1zi)

− 1
2
log φx − κ−1(vi)

2φx
z2

i + log h(vi; ν) + C, (6)

with h(vi; ν) being the density function of the mixture variable Vi and C a con-
stant. For Grubbs’ model in (5) it is possible to show that the expected com-
plete data log-likelihood function, called Q-function in Dempster, Laird and

Rubin (1977) evaluated in the current estimate θ̂
(k)

= (µ(k)T
,φ(k)T

, φ(k)T

x )T ,

may be expressed as Q(θ|θ̂(k)
) =

∑M
i=1 Qi(θ|θ̂(k)

) with

Qi(θ|θ̂(k)
) = −1

2
log |D(φ)| − 1

2
τ̂ (k)1T D−1(φ)1

− 1
2
κ̂

(k)
i (Y i − µ− 1ẑ

(k)
i )T D−1(φ)(Y i − µ− 1ẑ

(k)
i )

− 1
2
log φx − 1

2φx
(κ̂

(k)
i {ẑ(k)

i }2 + τ̂ (k)), (7)

where

ẑ
(k)
i = τ̂ (k) 1T D−1(φ̂

(k)
)(Y i − µ̂(k)), τ̂ (k) = φ̂(k)

x /ŝ(k), (8)

with ŝ(k) = 1 + φ̂(k)
x 1T D−1(φ̂

(k)
)1 and κ̂

(k)
i = E(κ−1

i (Vi)|Y i, θ̂
(k)

), for i =
1, . . . , M .

In general, the conditional expectation E(κ−1(V )|Y ) is given by

E(κ−1(V )|Y ) =

∫∞
0 {κ(v)}−(p/2+1) exp{−κ−1(v)u/2} dH∫∞

0 {κ(v)}−p/2 exp{−κ−1(v)u/2} dH
, (9)

which may be evaluated by using, for instance, the Laplace method (see Kass,
1997). However, for the most popular members of the scale mixture of normal
distributions, the expectation in (9) can be easily computed, some examples
are given below (see also Lange and Sinsheimer, 1993):

Student-t distribution. The Student-t distribution, denoted tp(µ,Λ, ν), with
ν > 0 degrees of freedom belongs to the class of scale mixtures of normal
distributions with κ(v) = 1/v and V ∼ Gamma(ν/2, ν/2), so that

E(κ−1(V )|Y ) =
ν + p

ν + u
.

The Cauchy distribution is obtained when ν = 1.

Slash distribution. For the Slash distribution one has κ(v) = 1/v and the
mixture variable has density function

h(v; ν) = νvν−1, 0 < v ≤ 1 and ν > 0,
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with conditional expectation

E(κ−1(V )|Y ) =
(

p + 2ν

u

)
P1(p/2 + ν + 1, u/2)

P1(p/2 + ν, u/2)
,

where Px(a, b) denotes the cumulative distribution function of a random vari-
able Gamma(a, b), that is

Px(a, b) =
ba

Γ(a)

∫ x

0
ra−1e−br dr.

Contaminated normal distribution. For the contaminated normal distribution,
CN(µ,Λ, ε, γ), 0 ≤ ε ≤ 1 and 0 < γ < 1, one has κ(v) = 1/v and the mixture
variable follows the discrete probability function

h(v; ν) =





ε, if v = γ,

1− ε, if v = 1,

where ν = (ε, γ)T . The expectation in (9) reduces to

E(κ−1(V )|Y ) =
1− ε + εγp/2+1e(1−γ)u/2

1− ε + εγp/2e(1−γ)u/2
.

Power exponential distribution. It is possible to express the power exponential
distribution (0 < ν ≤ 2) in the class of scale mixtures of normal distribu-
tions (West, 1987; Lange and Sinsheimer, 1993), however the evaluation of
E(κ−1(V )|Y ) in (9) may be hard. In this work we apply the approach pro-
posed by (Lange and Sinsheimer, 1993, sec. 3), in which the power exponential
density takes the form

|2πΛ|−1/2 exp{−η(u)/2},
where η(u) = uν/2 + p log cn and cn is the normalizing constant. Here, the
quantity η′(U) corresponds to E(κ−1(V )|Y ), for which we obtain

η′(u) = (ν/2)uν/2−1, for u 6= 0 and ν 6= 1.

Typically, the conditional expectation κ̂
(k)
i = E(κ−1

i (Vi)|Y i, θ̂
(k)

) required in

(7) depends on the distance û
(k)
i = ui(θ̂

(k)
), where

û
(k)
i = (Y i − µ̂(k))T (D(φ̂

(k)
) + φ̂(k)

x 11T )−1(Y i − µ̂(k))

= e
(k)T
i D−1(φ̂

(k)
)e

(k)
i + {ẑ(k)

i }2/φ̂(k)
x ,

with e
(k)
i = Y i − µ̂(k) − 1ẑ

(k)
i , for i = 1, . . . ,M .
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2.1 ECM Algorithm

Similarly to the work by Pinheiro, Liu and Wu (2001), in this section we
propose an ECM algorithm that is a simple extension of the popular EM
algorithm. The M-step is replaced by a constrained maximization (CM-step),

where the maximization of Q(θ|θ̂(k)
) is made with some function of θ held

fixed.

E-step: Given θ = θ̂
(k)

, compute τ̂ (k), ẑ
(k)
i and κ̂

(k)
i for a particular scale

mixture of normal distribution using equations (8)-(9).

CM-step 1: Update µ̂(k+1) by maximizing (7) with respect to µ, using

µ̂(k+1) =
1

∑M
i=1 κ̂

(k)
i

M∑

i=1

κ̂
(k)
i (Y i − 1ẑ

(k)
i ).

CM-step 2: Fix µ = µ̂(k+1) and update φ̂
(k)

by maximizing (7) over φ,
obtaining

φ̂
(k+1)

= τ̂ (k) 1 +
1

M

M∑

i=1

κ̂
(k)
i D(e

(k)
i )e

(k)
i ,

where e
(k)
i = Y i − µ̂(k+1) − 1ẑ

(k)
i , for i = 1, . . . ,M .

CM-step 3: Update φ(k)
x by maximizing (7) with respect to φx, which gives

φ̂(k+1)
x = τ̂ (k) +

1

M

M∑

i=1

κ̂
(k)
i ẑ

(k)2
i .

The algorithm iterates between the E and CM steps until reach convergence.

In fact, under some mild conditions the sequence {θ̂(k)} converges to the max-
imum likelihood estimate θ̂.

In this work we suppose that the parameters associated to the mixture variable
V are known. In particular, for the Student-t distribution, Lucas (1997) notice
that the parameter estimates are robust against extreme observation only in
the case that the degrees of freedom are kept fixed. Whereas Fernández and
Steel (1999), alert on the estimation of ν and they notice that in this case
the function of log-likelihood is unbounded and that indeed it corresponds to
an nonregular estimation problem. Thus, to estimate θ = (µT ,φT , φx)

T we
consider a set of acceptable values for the parameters related to the mixture
variable and we choose the one that maximizes the log-likelihood function (see
Lange, Little and Taylor, 1989).
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We notice that the proposed algorithm shares the simplicity and stability of
the EM algorithms for maximum likelihood estimation introduced by Bolfarine
and Galea (1995, 1996) in comparative calibration models. In addition, it is
computationally no expensive and guarantees no negative scale parameter
estimates.

3 Local Influence

The aim of local influence Cook (1986) is to investigate the behavior of some in-
fluence measure T (ω) when small perturbations are made into the model/data,
where ω is a q-dimensional vector of perturbations restricted to some open
subset Ω ⊂ Rq. In this work we assess local influence by using an appropri-
ate measure based on the complete log-likelihood function and particularly
recommended for incomplete data.

Let L(θ,ω|Y ) and L(θ,ω|Y c) be the perturbed log-likelihood functions for
observed and complete data, respectively. We will assume that the no per-
turbed model is nested into the perturbed model, that is, there exists ω0 ∈ Ω
such that L(θ,ω0|Y ) = L(θ|Y ) and L(θ, ω0|Y c) = L(θ, |Y c) for all θ. The
influence assessment of a particular perturbation scheme on the maximum
likelihood estimates θ̂ and θ̂(ω) will be evaluated by the influence measure
T (ω) as ω varies in Ω.

Zhu and Lee (2001) propose an approach to perform influence diagnostic in
models with incomplete data based on the Q-displacement

fQ(ω) = 2{Q(θ̂|θ̂)−Q(θ̂(ω)|θ̂)}, (10)

where θ̂(ω) denotes the solution for θ by maximizing Q(θ,ω|θ̂) = E{L(θ,ω|Y c)
|Y , θ̂}.

Similarly to Cook (1986), Zhu and Lee (2001) study the behavior of the surface
γ(ω) = (ωT , fQ(ω))T and calculate the normal curvature CfQ,h at the unitary
direction h ∈ Rq, given by

CfQ,h(θ) = 2 hT∆T{−Q̈(θ)}−1∆h, (11)

where

Q̈(θ) =
∂2Q(θ|θ̂)

∂θ∂θT and ∆ =
∂2Q(θ,ω|θ̂)

∂θ∂ωT
(12)

which are evaluated at θ̂ and ω0. As the case of normal curvature given in
Cook (1986) the suggestion here to examine the elements of the eigenvector
associated with the largest eigenvalue of the matrix T̈ = ∆T{−Q̈}−1∆. Al-
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ternatively, one may also examine the total local influence Ci = CfQ,hi
(θ),

where hi is an q × 1 vector of zeros with one at the ith position.

In some occasions, we may be interested in to assess the influence on a subset
θ1 of the θ = (θT

1 ,θT
2 )T . In this case, the Q-displacement is given by

fQ(ω) = 2{Q(θ̂|θ̂)−Q(θ̂1(ω), θ̂2(θ̂1(ω))|θ̂)},

where θ̂2(θ̂1(ω)) is the maximum likelihood estimate of θ2 in the perturbed
model, for θ1 fixed. Consider the following matrices in partitioned form

Q̈(θ) =




Q̈11 Q̈12

Q̈21 Q̈22


 and B22 =



0 0

0 Q̈
−1

22


 .

Then, the normal curvature at the direction h for θ1 assumes the form

CfQ,h(θ1) = −2hT∆T{Q̈(θ)−1 −B22}∆h.

Since CfQ,h is not invariant under uniform change of scale, Poon and Poon

(1999) proposed the conformal normal curvature BfQ,h(θ) = CfQ,h(θ)/||2 T̈ ||,
where ‖ · ‖ denotes some matricial norm. For example, Zhu and Lee (2001)
consider the norm tr(2 T̈ ). An interesting property of the conformal normal
curvature is that for any unitary direction h one has 0 ≤ BfQ,h(θ) ≤ 1,
which allows comparison of curvatures among different scale mixtures of nor-
mal models.

In order to determine if the ith-observation is possible influential some authors
(see, for instance, Zhu and Lee, 2001; Poon and Poon, 1999) have proposed a
benchmark value for

BfQ,hj
(θ) =

r∑

i=1

λ̃iu
2
ij

where {(λi,ui)}q
i=1 corresponds to the eigenvalues and eigenvectors of the

matrix

−2T̈ =
q∑

i=1

λiuiu
T
i

with λ1 ≥ · · · ≥ λr > λr+1 = · · · = λq = 0, λ̃i = λi/
∑r

k=1 λk and ui =
(ui1, . . . , uiq)

T . Zhu and Lee (2001) defined M(0)j = BfQ,hi
and by noting that

M(0) = 1/q they proposed classify the ith-observation as possible influential
if BfQ,hi

is greather than the benchmark

M(0) + 2SM(0)

where SM(0) is the sample standard error of {M(0)k, k = 1, . . . , q} (see also,
Lee and Xu, 2004).
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4 Curvature Derivation

In this section we will derive the normal curvature for the Grubbs’ model
by considering the hierarchical formulation given in (5). We will compute
Q̈(θ) = ∂2Q(θ|θ̂)/∂θ∂θT and ∆ = ∂2Q(θ,ω|θ̂)/∂θ∂ωT by using results of
matrix differentiation described in Magnus and Neudecker (1988). Details on
the differential calculations for the matrices Q̈ and ∆ under different pertur-
bation schemes are given in Appendix.

4.1 Hessian Matrix, Q̈

Let θ = (µT ,φT , φx)
T be the parameter vector of interest. The hessian matrix

Q̈ evaluated at θ = θ̂ is given by Q̈(θ̂) =
∑M

i=1 Q̈i(θ̂) with

Q̈i(θ̂) =
∂2Qi(θ|θ̂)

∂θ∂θT

∣∣∣∣
θ=θ̂

=




Q̈11,i Q̈12,i 0

Q̈12,i Q̈22,i 0

0 0 Q̈33,i




, (13)

with

Q̈11,i = −κ̂iD
−1(φ̂), Q̈12,i = −κ̂iD

−2(φ̂)D(ei),

Q̈22,i = 1
2
D−2(φ̂)− τ̂D−3(φ̂)− κ̂iD(ei)D

−3(φ̂)D(ei) and

Q̈33,i = 1

2φ̂2
x

− 1

φ̂3
x

(κ̂iẑ
2
i + τ̂),

where ei = Y i − µ̂ − 1ẑi, i = 1, . . . , M and D−m(a) = diag(a−m
1 , . . . , a−m

p ),
for a being a p-dimensional vector and m > 0.

4.2 Perturbation Schemes

We will evaluate in the sequel the matrix ∆ under the following perturba-
tion schemes for the Grubbs’ model given in (5): case-weight for detecting
observations with outstanding contribution on the log-likelihood function and
that may exercise high influence on the maximum likelihood estimates; re-
sponse perturbation made on the observed values from the instruments used
in the study, which may indicate observations with large influence on their
own predicted values and multiplicative bias perturbation that may indicate if
the relationship between the observed measurements from the p instruments
and the true characteristic values is adequate. For each perturbation scheme
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one has the partitioned form

∆ =




∆1

∆2

∆3




,

where ∆1 = ∂2Q(θ, ω|θ̂)/∂µ∂ωT ∈ Rp×q, ∆2 = ∂2Q(θ, ω|θ̂)/∂φ∂ωT ∈ Rp×q

and ∆3 = ∂2Q(θ, ω|θ̂)/∂φx∂ωT ∈ R1×q with q being the dimension of the
perturbation vector ω. We will assume that integration and differentiation
operations may be exchanged.

Case-weight

First, consider the following arbitrary atribution of weights for the experimen-
tal units in the log-likelihood function for complete data

L(θ,ω|Y c) =
M∑

i=1

ωiLi(θ|Y c),

with Li(θ|Y c) given in (6). Here ω = (ω1, . . . , ωM)T where 0 ≤ ωi ≤ 1 for
i = 1, . . . , M and ω0 = 1M . Note that, for ωi = 0 and ωj = 1, j 6= i,
the ith experimental unity is dropped from the log-likelihood function for
complete data. In addition, it is possible to show that the local influence for
this perturbation scheme is equivalent to the deletion method (Osorio, 2006).

For this perturbation scheme we find

∂2L(θ,ω|Y c)

∂µ∂ωi

∣∣∣∣
ω=ω0

= κ−1(vi)D
−1(φ)(Y i − µ− 1zi),

∂2L(θ,ω|Y c)

∂φ∂ωi

∣∣∣∣
ω=ω0

= −1
2
{D−1(φ)1− κ−1(vi)D

−2(φ)D(εi)εi} and

∂2L(θ,ω|Y c)

∂φx∂ωi

∣∣∣∣
ω=ω0

= −1
2

{
1

φx
− κ−1(vi)

φ2
x

z2
i

}
,

where εi = Y i − µ− 1zi, for i = 1, . . . ,M .

Measurement Perturbation

We will consider additive perturbations made on the measurements obtained
by the p instruments under study. Let Y iω denote the perturbed measurements
for the ith experimental unity. The following perturbation schemes will be
evaluated:
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Joint perturbation on the measurements obtained for the p instruments: here
we replace Y i by Y iω = Y i + ωi, where ωi ∈ Rp, i = 1, . . . , M , in which one
has ω0 = 0 ∈ RMp. The perturbed log-likelihood function for the complete
data is given by L(θ, ω|Y c) =

∑M
i=1 Li(θ,ω|Y c), where

Li(θ, ω|Y c) = −1
2
log |D(φ)| − κ−1(vi)

2
(εi + ωi)

T D−1(φ)(εi + ωi)

− 1
2
log φx − κ−1(vi)

2φx
z2

i + log h(vi; ν) + C,

with εi = Y i − µ− 1zi, for i = 1, . . . ,M . We obtain

∂2L(θ, ω|Y c)

∂µ∂ωT
i

∣∣∣∣
ω=ω0

= κ−1(vi)D
−1(φ),

∂2L(θ, ω|Y c)

∂φ∂ωT
i

∣∣∣∣
ω=ω0

= κ−1(vi)D
−2(φ)D(εi) and

∂2L(θ, ω|Y c)

∂φx∂ωT
i

∣∣∣∣
ω=ω0

= 0.

Perturbation on the measurements obtained for a particular instrument: sup-
pose the interest is on perturbing the measurements obtained for the tth in-
strument, t = 1, . . . , p. In this case one has Y iω = Y i +ωict, where ct denotes
a p-dimensional vector of zeros with one at the tth position. The perturbation
vector is given by ω = (ω1, . . . , ωM)T , ω0 = 0 ∈ RM and the log-likelihood
function for complete data assumes the form L(θ,ω|Y c) =

∑M
i=1 Li(θ, ω|Y c),

where

Li(θ,ω|Y c) = −1
2
log |D(φ)| − κ−1(vi)

2
(εi + ωict)

T D−1(φ)(εi + ωict)

− 1
2
log φx − κ−1(vi)

2φx
z2

i + log h(vi; ν) + C,

with εi = Y i − µ − 1zi, for i = 1, . . . , M . Applying the differentials given in
Appendix we obtain

∂2L(θ,ω|Y c)

∂µ∂ωi

∣∣∣∣
ω=ω0

= κ−1(vi)D
−1(φ)ct,

∂2L(θ,ω|Y c)

∂φ∂ωi

∣∣∣∣
ω=ω0

= κ−1(vi)D
−2(φ)D(εi)ct and

∂2L(θ,ω|Y c)

∂φx∂ωi

∣∣∣∣
ω=ω0

= 0.

Multiplicative Bias Perturbation

Consider the perturbed model

Y i = µ + ωzi + εi, i = 1, . . . , M,
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where ω ∈ Rp. Influence diagnostics for this kind of model under Student-t
errors have been studied by Galea, Bolfarine and Vilca (2005) with an ap-
plication to the data set described by Barnett (1969) on lung vital capacity.
Here ω0 = 1p and the log-likelihood function for complete data is given by
L(θ,ω|Y c) =

∑M
i=1 Li(θ,ω|Y c), with

Li(θ,ω|Y c) = −1
2
log |D(φ)| − κ−1(vi)

2
(Y i − µ− ωzi)

T D−1(φ)(Y i − µ− ωzi)

− 1
2
log φx − κ−1(vi)

2φx
z2

i + log h(vi; ν) + C,

for i = 1, . . . ,M . One may show that ∂2L(θ,ω|Y c)/∂θ∂ωT =
∑M

i=1 ∂2Li(θ,ω|Y c)/∂θ∂ωT ,
where

∂2Li(θ,ω|Y c)

∂µ∂ωT
= −κ−1(vi)ziD

−1(φ),

∂2Li(θ,ω|Y c)

∂φ∂ωT
= −κ−1(vi)ziD

−2(φ)D(εi(ω)) and

∂2Li(θ,ω|Y c)

∂φx∂ωT
= 0,

with εi(ω) = Y i − µ − ωzi for i = 1, . . . , M , which must be evaluated at θ̂
and ω0.

5 Application

We consider Grubbs’ model given in (2) with the following hierarchical for-
mulation:

Y i|zi
ind∼ SMN5(µ + 1zi, D(φ); H) and

zi
ind∼ SMN(0, φx; H), i = 1, . . . , 64,

where Y i = (Yi1, . . . , Yi5)
T , D(φ) = diag(φ1, . . . , φ5) and H denote the distri-

bution function for the mixture variable Vi, i = 1, . . . , 64.

In our analyzes we suppose that the mixture variables follows a Gamma dis-
tribution, Beta, discrete and point mass in Vi, that is, the marginal response
Y i follows a Student-t, slash, contaminated normal and normal distribution,
respectively. We set ν = 2.3 and ν = 0.8 for the degrees of freedom in the
Student-t distribution and the slash distribution, respectively and ε = 0.15
and γ = 0.05 for the parameters of the contaminated normal, such parame-
ters were chosen a set of acceptable values. The plot of the profile log-likelihood
function for these models is given in Figure 3.
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Table 1
Parameter estimates of the fitted models to the thermocouples data.

Parameter Normal Student-t Slash Contaminated

normal

µ1 32608.3 (5.832) 32608.3 (5.262) 32608.2 (4.447) 32608.2 (5.318)

µ2 32198.4 (6.650) 32198.6 (5.353) 32198.5 (4.504) 32198.5 (5.355)

µ3 32604.8 (5.864) 32605.2 (5.295) 32605.1 (4.474) 32605.1 (5.350)

µ4 32363.8 (5.739) 32363.8 (5.272) 32363.8 (4.462) 32363.8 (5.340)

µ5 32290.7 (5.948) 32290.6 (5.310) 32290.5 (4.489) 32290.5 (5.348)

φ1 1.8945 (0.322) 0.5190 (0.771) 0.2543 (1.688) 0.6029 (0.809)

φ2 12.0975 (0.061) 1.3062 (0.412) 0.5549 (1.027) 1.0017 (0.589)

φ3 2.2657 (0.281) 0.8023 (0.605) 0.3943 (1.334) 0.9515 (0.612)

φ4 0.8156 (0.396) 0.6075 (0.720) 0.3320 (1.491) 0.8377 (0.670)

φ5 3.2543 (0.207) 0.9291 (0.543) 0.4777 (1.158) 0.9273 (0.624)

log-likelihood -753.495 -699.891 -699.740 -696.143

In Table 1 are presented the maximum likelihood estimates for the parame-
ter vector θ (standard errors in parenthesis) for the normal, Student-t, slash
and contaminated normal models. The asymptotic variances of the parame-
ter estimates were obtained from the Fisher information matrix presented in
Appendix A. For the slash distribution we use the expressions given in Lange
and Sinsheimer (1993) for obtaining the constants dg and fg, whereas for
the contaminated normal distribution these expressions were obtained using
a Laplace approximation.

The estimates of φx are 32.123; 21.137 and 11.578 and 27.673 for the normal,
Student-t, slash and contaminated normal models, respectively. We see that
the inference for the four fitted models is quite similar, but the estimates for the
scale parameters are not comparable because there are in different scales. The
power exponential model was also fitted to the data, but the shape parameter
estimate does not seem to be satisfactory so the estimates were omitted. The
likelihood ratio statistics for the Student-t, slash and contaminated normal
models against the normal model, corresponding to LR = 107.208, LR =
107.510 and LR = 114.704, respectively, indicate that models based in heavy-
tailed distributions provides a better fit than the normal model.

Note from Figure 4 that when we use distributions with tails heavier than the
normal ones the ECM algorithm allows to accommodate such observations at-
tributing to them small weights in the estimation procedure. The weights for
the normal distribution (κ̂i = 1, ∀i) are indicated in Figure 4 as a segmented
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line. All our results have been obtained using a library for S-Plus, available
upon request from the first author. Next we identify influential observations
for the thermocouples data set using the conformal curvature Bi. The per-
turbation schemes described in the previous section were considered. In all
the influence graphics the benchmark proposed by Zhu and Lee (2001) was
considered as cut-off value.
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Fig. 3. Plot of the profile log-likelihood for the fitted models.
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Fig. 4. Estimated weights versus distances for the Student-t, slash and contaminated
normal models.

Case-weight perturbation: from Figures 5-7 is noted that under normal errors,
the observations detected as outliers in Figure 1 are identified as influential on

θ̂ = (µ̂T , φ̂
T
, φ̂x)

T and, in particular, observations 20 and 60 are influential on
µ̂ as well as on φ̂. As espected, the influence of such observations is reduced
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when we consider distributions with heavier tails than the normal ones. For
this data set the slash model with small degrees of freedom accommodates
slightly better the influential observations.
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Fig. 7. Index plots of Bi for φ̂ under case-weight perturbation.

Joint measurement perturbation: the conformal curvatures Bi(θ1) with θ1 =
(µT , φT )T for those individuals detected as outliers for the Mahalanobis dis-
tance (see Figure 2) are presented in Figure 8 for the normal (−−), Student-t
(· · · ), slash (—) and contaminated normal (·− ·) models. Using this perturba-
tion scheme we can examine the influence on the measurements within each
items. In addition, we can show that exist a connection between the gener-
alized leverage and local influence under this perturbation scheme (see, for
example, Osorio, 2006 and Osorio, Paula and Galea, 2007). In Figure 8 is ap-
preciated some influence when the measurements of items 20, 36, 45, 57 and
60 are perturbed under normal errors. This influence is reduced when we use
distributions with heavier tails than the normal ones.

Multiplicative bias perturbation: Figure 9 presents the conformal curvatures
for the three fitted models. We note that for the considered models, the values
of Bi are quite different, suggesting that the assumption of equality of multi-
plicative biases is not supported by the data. This conclusion agrees with the
results of the hypothesis test described in Christensen and Blackwood (1993).
This result indicates that the comparative calibration model (Barnett, 1969)
may be more appropriate to modelling this data set. Therefore, the impor-
tance of this perturbation scheme is that of allowing to criticize the model
building.
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6 Concluding Remarks

In this work we have discussed the parameter estimation in the Grubbs’ model
under a class of distributions that presents heavier tails than the normal ones.
Through a local influence study some aspects of robustness of the maximum
likelihood estimators under the scale mixture of normal distributions were
noted. Explicit expressions are obtained for matrix ∆ under different per-
turbation schemes considered. It is noted, however that other perturbation
schemes can be considered in analogous way. The results presented in this
work represent an extension of the work by Lachos, Vilca and Galea (2007). It
is important to emphasize the capacity of such models to attenuate outlying
observations, by means of attributing to these observations a small weight in
the estimation process. The results derived in this work agree with the consid-
erations that in this respect are presented in Lange and Sinsheimer (1993) as
well as with the comments of Pinheiro, Liu and Wu (2001) and Rosa, Padovani
and Gianola (2003, 2004) for the linear mixed-effects model and Galea, Bol-
farine and Vilca (2005) for comparative calibration models.
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A Fisher Information Matrix

From the equation (5) it is possible to show that the marginal log-likelihood
function for Y is given by L(θ) =

∑M
i=1 Li(θ), with

Li(θ) = −1
2
log |Σ| − 1

2
κ−1(vi)(Y i − µ)TΣ−1(Y i − µ) + C,

where Σ = D(φ) + φx11T and C is a constant. Thus, following Galea (1995),
the Fisher information matrix for θ assumes the block diagonal form

K(θ) =




K(µ) 0

0 K(ψ)


 ,
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where

K(ψ) =




K(φ) K(φ, φx)

KT (φ, φx) K(φx)


 ,

with

K(µ) =
4dg

p
Σ−1, K(φx) =

(
s− 1

s

)2 c1 + c2

φ2
x

,

K(φ) = c1hhT + c2{bbT + D(d)},
K(φ, φx) =

(
s− 1

s

)
c1

φx

D−1(φ) +
c2 − (s− 1)c1

s2
D−2(φ)

and

h = D−1(φ)1− τD−2(φ)1, b = τD−1(φ)1, d = D−2(φ)1− 2τD−3(φ)1,

where c1 = −1
4
+ fg

p(p+2)
, c2 = 2fg

p(p+2)
, with dg = E{W 2

g (U)U}, fg = E{W 2
g (U)U2},

U = ||Z||2 and Z has a multivariate spherical distribution, i.e. (see Fang, Kotz
and Ng, 1990) Z ∼ ECp(0, I; g).

B Differential Calculations

In this appendix the differentials d2
θ Q(θ|θ̂) and d2

θω L(θ|Y c) will be derived for
various perturbation schemes. The necessary matrices Q̈ and ∆ for the normal
curvature evaluation for model (5) may be obtained from the differentials
by applying some theorems of identification given in Magnus and Neudecker
(1988).

B.1 Hessian Matrix, Q̈

Using results of matrix differentiation one has that the second differential of
Q(θ|θ̂) with respect to θ is given by d2

θ Q(θ|θ̂) =
∑M

i=1 d2
θ Qi(θ|θ̂), with

d2
µ Qi(θ|θ̂) = −κ̂i(d µ)T D−1(φ) d µ, and

d2
µφ Qi(θ|θ̂) = −κ̂i(d µ)T D−2(φ)D(ε̂i) d φ,

where ε̂i = Y i − µ − 1ẑi, i = 1, . . . , M . The differentials of Qi(θ|θ̂) with
respect to φ lead to

d2
φ Qi(θ|θ̂) = 1

2
(d φ)T D−2(φ) d φ− τ̂(d φ)T D−3(φ) d φ

− κ̂i(d φ)T D(ε̂i)D
−3(φ)D(ε̂i) d φ.
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Finally, taking differencials of Qi(θ|θ̂) with respect to φx we find

d2
φx

Qi(θ|θ̂) = 1
2φ2

x
d2φx − 1

φ3
x
(κ̂iẑ

2
i + τ̂) d2φx.

The hessian matrix Q̈ is obtained by evaluating the differentials above at
θ = θ̂.

B.2 Perturbation Schemes

The differential d2
θω L(θ,ω|Y c) will be derived for each perturbation scheme.

Evaluating these differentials at θ = θ̂ and ω = ω0 one may obtain ∂2Q(θ|θ̂)/∂θ∂ωT

for the perturbation scheme under study. It is assumed in the calculations be-
low that one may exchange integration and differentiation operators.

Case-weight Perturbation

For this perturbation scheme we obtain the differentials

d2
µωi

L(θ,ω|Y c) = κ−1(vi)(d µ)T D−1(φ)(Y i − µ− 1zi) d ωi,

d2
φωi

L(θ,ω|Y c) = −1
2
(d φ)T{D−1(φ)1− κ−1(vi)D(εi)D

−2(φ)εi} d ωi and

d2
φxωi

L(θ,ω|Y c) = −1
2

{
1

φx
+ κ−1(vi)

φ2
x

z2
i

}
d φx d ωi,

where εi = Y i − µ− 1zi, for i = 1, . . . ,M .

Joint perturbation on the measurements obtained for the p instruments

Using the differential methodology, we find

d2
µωi

L(θ,ω|Y c) = κ−1(vi)(d µ)T D−1(φ) d ωi,

d2
φωi

L(θ,ω|Y c) = κ−1(vi)(d φ)T D(εi + ωi)D
−2(φ) d ωi and

d2
φxωi

L(θ,ω|Y c) = 0.

with εi = Y i − µ− 1zi, for i = 1, . . . ,M .

Perturbation on the masurements obtained for a particular instrument

Differentiating L(θ, ω|Y c) with respect to θ and ωi, we obtain

d2
µωi

L(θ,ω|Y c) = κ−1(vi)(d µ)T D−1(φ)ct d ωi,

d2
φωi

L(θ,ω|Y c) = κ−1(vi)(d φ)T D(εi + ωict)D
−2(φ)ct d ωi and

d2
φxωi

L(θ,ω|Y c) = 0.
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with εi = Y i − µ− 1zi, for i = 1, . . . ,M .

Perturbation on the multiplicative biases

In this case we obtain d2
θω L(θ,ω|Y c) =

∑M
i=1 d2

θω Li(θ,ω|Y c), where

d2
µω Li(θ,ω|Y c) = −κ−1(vi)zi(d µ)T D−1(φ) d ω,

d2
φω Li(θ,ω|Y c) = −κ−1(vi)zi(d φ)T D(εiω)D−2(φ) d ω and

d2
φxω Li(θ,ω|Y c) = 0

with εiω = Y i − µ− ωzi, for i = 1, . . . , M .
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