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Abstract

The aim of this paper is to derive local influence curvatures under various perturba-
tion schemes for elliptical linear models with longitudinal structure. The elliptical
class provides a useful generalization of the normal model since it covers both light-
and heavy-tailed distributions for the errors, such as Student-t, power exponential,
contaminated normal, among others. It is well known that elliptical models with
longer-than-normal tails may present robust parameter estimates against outlying
observations. However, little has been investigated on the robustness aspects of the
parameter estimates against perturbation schemes. We use appropriate derivative
operators to express the normal curvatures in tractable forms for any correlation
structure. Estimation procedures for the position and variance-covariance parame-
ters are also presented. A data set previously analyzed under a normal linear mixed
model is reanalyzed under elliptical models. Local influence graphics are used to
select less sensitive models with respect to some perturbation schemes.

Key words: Correlated data; Likelihood displacement; Matrix differential;
Outliers; Regression diagnostic; Robust estimation.

1 Introduction

We discuss in this paper the assessment of local influence in elliptical linear
models for analyzing longitudinal data. This class is based on the models pro-
posed by Lange, Little and Taylor (1989) and extends the repeated-measure
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normal linear models in the sense of covering both light- and heavy-tailed
symmetric distributions for the errors, including Student-t, power exponen-
tial, contaminated normal, among others. Thus, data sets containing a larger
number of outliers than can be expected under normal error may be bet-
ter accommodated under elliptical models with longer-than-normal tails and
since the inferences for elliptical models are similar to those for normal mod-
els, robust parameter estimates against outlying observations may be easily
obtained. In addition, the methodology of local influence may be helpful for
studying the robustness aspects of the maximum likelihood estimates against
perturbation schemes in the model (or data).

Linear and nonlinear multivariate elliptical models have been investigated by
various authors. For example, under t error, Lange, Little and Taylor (1989)
present an approach for modeling multivariate t-distributions with known and
unknown degrees of freedom, Welsch and Richardson (1997) describe multi-
variate t linear mixed models using the marginal distribution for the response,
Kowalski et al. (1999) compare the classical and Bayesian inferences for mul-
tivariate t linear models, Fernández and Steel (1999) reveal some pitfalls of
both Bayesian and maximum likelihood methods in multivariate t linear mod-
els with unknown degrees of freedom, Pinheiro, Liu and Wu (2001) propose
a robust hierarchical linear mixed model in which the random effects and the
within-subject errors have a multivariate t-distribution and Cysneiros and
Paula (2004) discuss restricted methods in t linear models with longitudinal
structure. Under other elliptical errors, for instance, Huggins (1993) constructs
M -estimators based in symmetric multivariate distributions with applications
in pedigree data, Lindsey (1999) discusses the application of the power ex-
ponential model in repeated-measurement problems, while Galea, Paula and
Bolfarine (1997), Liu (2000, 2002) and Dı́az-Garćıa, Galea and Leiva-Sánchez
(2003) derive influence diagnostic graphics in multivariate elliptical linear
models. More recently, Savalli, Paula and Cysneiros (2006) discuss the as-
sessment of variance components in elliptical linear mixed models. A detailed
description of the elliptical multivariate class is given, for instance, in Fang,
Kotz and Ng (1990).

Local influence (Cook, 1986) has become a very popular tool to assess model
assumptions. The approach consists in studying the effects of small pertur-
bations in the model (or data) on same influence measure. The methodology
has been largely applied in linear and nonlinear regression models. In par-
ticular, in linear mixed models, for instance, Beckman, Nachtsheim and Cook
(1987) have applied the approach to detect influential observations in a normal
linear mixed model with emphasis to study influence of single observations,
while Lesaffre and Verbeke (1998) extend the local influence methodology
to normal linear mixed models in repeated-measurement context and under
the case-weight perturbation scheme. The local influence approach has also
been applied in non-normal mixed models, such as generalized linear models
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(see, for instance, Ouwens, Tan and Berger, 2001 and Zhu and Lee, 2003). Our
focus will be on studying this methodology in elliptical linear models with lon-
gitudinal structure, which includes as a particular case the mixed-effect case.
However, the results are more general including various possible correlation
structures for the errors as well as different perturbation schemes. Robust-
ness aspects of the maximum likelihood estimates against some perturbation
schemes are investigated for a particular data set fitted under normal and
elliptical linear mixed models with heavier-tailed error distributions.

The paper is organized as follows. In Section 2 the elliptical linear class with
longitudinal structure is defined, an iterative process for the parameter estima-
tion and some inferential results are also given. Section 3 deals with some basic
calculations related with local influence. Derivations of the normal curvature
under different perturbation schemes are made in Section 4 in which appropri-
ate derivative operators are used. A data set previously analyzed under normal
error is reanalyzed in Section 5 under elliptical errors with heavy-tailed dis-
tributions. The last section deals with some conclusions.

2 Elliptical Linear Model

The class of elliptical distributions has received special attention in the last
years, particularly due the fact of including distributions such Student-t, power
exponential, contaminated normal, among others, with heavier or lighter tails
than the normal ones. We say that an m-dimensional vector Y has a multi-
variate elliptical distribution (see, for instance, Fang, Kotz and Ng, 1990 and
Arellano, 1994) with location parameter µ ∈ Rm and a positive definite scale
matrix Σ if its density function assumes the form

fY (y) = |Σ|−1/2g[(y − µ)TΣ−1(y − µ)], (1)

where g : R → [0,∞) such that
∫∞
0 um/2−1g(u) du < ∞. Typically g(·) is

known as the density generator. We will use the notation Y ∼ ECm(µ,Σ, g).
A description of multivariate elliptical distributions may be found, for in-
stance, in Galea, Paula and Bolfarine (1997).

Consider Y i = (Yi1, . . . , Yimi
)T , i = 1, . . . , n, independent random vectors

such that Y i ∼ ECmi
(X iβ,Σi, g), where µi = X iβ, with X i being an

mi × p model matrix for the ith individual and β a p-dimensional unknown
parameter. In addition we will assume that Σi = Σi(α) can be structured
by α = (α1, . . . , αk)

T , as described, for instance, in Jennrich and Schluchter
(1986). However, it is important to observe that Σi is proportional to the
variance-covariance matrix of Y i by a quantity ηi that may be obtained from
the derivative of the characteristic function (see, for instance, Fang, Kotz and
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Ng, 1990). In particular, for the normal and Student-t model with ν degrees
of freedom one has ηi = 1 and ηi = ν/(ν − 2), (ν > 2), respectively. Thus, the
estimates of α1, . . . , αk are not comparable among different elliptical errors.

The log-likelihood function for the parameter vector θ = (βT ,αT )T is given
by L(θ) =

∑n
i=1 Li(θ), where

Li(θ) = −1
2
log |Σi|+ log g(ui) (2)

and ui = (Y i − X iβ)TΣ−1
i (Y i − X iβ) is the Mahanalobis distance, i =

1, . . . , n. Assuming g(·) continuous and differentiable we can define the quan-
tities

Wg(u) =
d

du
log g(u) =

g′(u)

g(u)
and W ′

g(u) =
d

du
Wg(u). (3)

Examples of Wg(u) and W ′
g(u) for some multivariate elliptical distributions

are:

• Student-t with ν > 0 degrees of freedom, tm(µ,Σ, ν) (Lange, Little and
Taylor, 1989). The use of the t-distribution as an alternative to the normal
distribution, has frequently been suggested in the literature, for example,
Little (1988) and Lange, Little and Taylor (1989) use the Student-t distri-
bution for robust modeling. In this case, we have

Wg(u) = −1

2

(
ν + m

ν + u

)
and W ′

g(u) =
1

2

ν + m

(ν + u)2
.

• Power exponential, PEm(µ,Σ, λ), with the shape parameter λ > 0 (Gómez,
Gómez-Villegas and Maŕın, 1998). This family presents both light- (λ > 1)
and heavy-tailed (λ < 1) distributions and includes the normal case (λ = 1).
Applications of this distribution for analyzing repeated-measure data may
be found, for instance, in Lindsey (1999). Thus, for u 6= 0 and λ 6= 1

2
we

have
Wg(u) = −1

2
λuλ−1 and W ′

g(u) = −1
2
λ(λ− 1)uλ−2.

• Contaminated normal, CNm(µ,Σ, δ, γ), 0 < δ < 1 and 0 ≤ γ < 1 (Little,
1988). This distribution may also be applied for modeling symmetric data
with outlying observations. The parameter δ represents the percentage of
outliers while γ may be interpreted as a scale factor. Applications as well
as discussions on this distribution are given, for example, in Little (1988)
and Lange, Little and Taylor (1989). We obtain

Wg(u) = −1

2

1− δ + δγm/2+1e(1−γ)u/2

1− δ + δγm/2e(1−γ)u/2
and

W ′
g(u) = −1

2

δγm/2(1− γ){Wg(u) + γ/2}e(1−γ)u/2

1− δ + δγm/2e(1−γ)u/2
.
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The score functions for β and α are, respectively, given by

U (β) =
n∑

i=1

viX
T
i Σ−1

i (Y i −X iβ) and (4)

U (α) = (U(α1), . . . , U(αk))
T

with

U(αj) = −1
2

n∑

i=1

{trΣ−1
i Σ̇i(j)− vir

T
i Σ−1

i Σ̇i(j)Σ
−1
i ri}, (5)

for j = 1, . . . , k, Σ̇i(j) = ∂Σi/∂αj, ri = Y i−X iβ and vi = vi(θ) = −2Wg(ui),
i = 1, . . . , n.

A joint iterative procedure to obtain the maximum likelihood estimates of θ
and α is given by

β(r+1) =
( n∑

i=1

vi(θ
(r)) XT

i Σ
−(r)
i X i

)−1 n∑

i=1

vi(θ
(r)) XT

i Σ
−(r)
i Y i and (6)

α(r+1) = arg max
α

{L(β(r+1),α)} (7)

for r = 0, 1, . . . . To perform the maximization in (7) we consider a multivariate
secant method (see, for instance, Dennis and Schnabel, 1996) where the score
functions are given in (5). Starting values β(0) and α(0) are required for (6)-
(7). The quantity vi(θ) = −2Wg(ui) that appears in the equations (4)-(5) may
be interpreted as a weight and since g(ui) is in general a positive decreasing
function one has that vi(θ) > 0 for the majority of the elliptical models. In
particular, for the Student-t and power exponential (λ < 1) distributions vi(θ)
is inversely proportional to the Mahalanobis distance. Thus, the larger ui is
smaller vi(θ) is, and the estimation procedure (6)-(7) tends to give smaller
weight to outlying observations in the sense of the Mahalanobis distance.

The Fisher information matrix for θ assumes the following block diagonal
form:

K(θ) =




K(β) 0

0 K(α)


 , (8)

where

K(β) =
n∑

i=1

4dgi

mi

XT
i Σ−1

i X i and K(α) =
n∑

i=1

Ki(α).

The (r, s)th element of Ki(α) is given by

Ki,rs(α) =
brsi

4

(
4fgi

mi(mi + 2)
− 1

)
+

2fgi

mi(mi + 2)
tr{Σ−1

i Σ̇i(r)Σ
−1
i Σ̇i(s)},

where dgi = E{W 2
g (Ui)Ui}, fgi = E{W 2

g (Ui)U
2
i } with Ui = ||Zi||2, Zi ∼

ECmi
(0, Imi

, g) and brsi = tr{Σ−1
i Σ̇i(r)} tr{Σ−1

i Σ̇i(s)}. It is possible to ob-
tain closed-form expressions for dgi and fgi for some multivariate elliptical
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distributions. In particular, for the Student-t distribution with ν degrees of
freedom one has dgi = mi

4

(
ν+mi

ν+mi+2

)
and fgi = mi(mi+2)

4

(
ν+mi

ν+mi+2

)
, and for

the power exponential distribution with shape parameter λ we find dgi =
λ2

21/λ Γ
(

mi+2
2λ

+ 2
)
/Γ

(
mi

2λ

)
and fgi = mi(mi+2λ)

4
, where Γ(·) denotes the gamma

function. In this work the asymptotic variance-covariance matrices for the
maximum likelihood estimates β̂ and α̂ are estimated, respectively, through
K−1(β) and K−1(α).

3 Local Influence

The interest of the local influence method is to investigate the behavior of some
influence measure when perturbations are made in the model (or data). Let ω
be a q-dimensional vector of perturbations restricted to some open subset Ω ∈
Rq, the perturbed log-likelihood function is denoted by L(θ|ω). It is assumed
that exists ω0 ∈ Ω, a vector of no perturbation, such that L(θ|ω0) = L(θ).
To assess the influence of minor perturbations on the maximum likelihood
estimate θ̂, one may consider the likelihood displacement LD(ω) = 2{L(θ̂)−
L(θ̂ω)}, where θ̂ω denotes the maximum likelihood estimate under L(θ|ω).

Cook (1986) suggests to study the local behavior of LD(ω) around ω0. Based
on this measure he shows that the normal curvature in the direction ` is given

by C`(θ) = 2|`T∆T L̈
−1

∆`|, where ||`|| = 1, ∆ = ∂2L(θ|ω)/∂θ∂ωT and −L̈
is the observed information matrix, both ∆ and L̈ are evaluated at θ̂ and
ω0. In order to have a curvature invariant under a uniform change of scale
Poon and Poon (1999) proposed the conformal normal curvature B`(θ) =

C`(θ)/||2∆T L̈
−1

∆||F , where || · ||F denotes the Frobenius norm defined as
||A||F = {tr(AT A)}1/2 with A being a r × s matrix. An interesting property
of the conformal normal curvature is that for any unitary direction ` one has
0 ≤ B`(θ) ≤ 1. It allows comparison of curvatures among different elliptical
error models.

A suggestion is to consider the direction `max corresponding to the largest
curvature B`max(θ). However, specific directions may also be evaluated; for
example the index plot of Bi = B`i

(θ) (see, for instance, Lesaffre and Verbeke,
1998), where `i is a q×1 vector with one at the ith position and zeros elsewhere.
From Cook (1986) and by using the quantities above we can also calculate the
conformal normal curvatures B`(β) and B`(α).

6



4 Curvature Derivation

In this section we derive the observed information matrix −L̈ as well as ∆ for
different perturbation schemes. These matrices are obtained using results of
matrix differentiation (see, for instance, Magnus and Neudecker, 1988). The
differentials d2

θL(θ) for the postulated model and d2
θωL(θ|ω) for the perturbed

model are given in Appendix A.

4.1 Observed Information Matrix

Considering θ = (βT ,αT )T , the log-likelihood function for the postulated
model is given in (2). Thus, the observed information matrix evaluated at θ =
θ̂ becomes given by −L̈(θ̂) = −∑n

i=1 L̈i(θ̂), with L̈i having the partitioned
form

L̈i(θ̂) =
∂2Li(θ)

∂θ∂θT

∣∣∣∣
θ=θ̂

=




L̈11,i L̈12,i

L̈
T

12,i L̈22,i


 , (9)

where

L̈11,i = 2XT
i Σ̂

−1

i {Wg(ûi)Σ̂i + 2W ′
g(ûi)r̂ir̂

T
i }Σ̂

−1

i X i,

L̈12,i =
∂2Li(θ)

∂β∂αT

∣∣∣∣
θ=θ̂

,

with

∂2Li(θ)

∂β∂αr

∣∣∣∣
θ=θ̂

= 2XT
i Σ̂

−1

i {Wg(ûi)Σ̂i + W ′
g(ûi)r̂ir̂

T
i }Σ̂

−1

i Σ̇i(r)Σ̂
−1

i r̂i,

for r = 1, . . . , k, and

L̈22,i =
∂2Li(θ)

∂α∂αT

∣∣∣∣
θ=θ̂

whose (r, s)th element is given by

∂2Li(θ)

∂αr∂αs

∣∣∣∣
θ=θ̂

= 1
2
tr Σ̂

−1

i {Σ̇i(r)Σ̂
−1

i Σ̇i(s)− Σ̈i(r, s)}

+ r̂T
i Σ̂

−1

i {W ′
g(ûi)Σ̇i(r)Σ̂

−1

i r̂ir̂
T
i Σ̂

−1

i Σ̇i(r)−Wg(ûi)Σ̈i(r, s)

+ Wg(ûi)Σ̇i(r)Σ̂
−1

i Σ̇i(s) + Wg(ûi)Σ̇i(s)Σ̂
−1

i Σ̇i(r)}Σ̂−1

i r̂i,

for r, s = 1, . . . , k. Here, ûi = r̂T
i Σ̂

−1

i r̂i, r̂i = Y i − X iβ̂, Σ̂i = Σi(α̂), for
i = 1, . . . , n, and Σ̇i(r) = ∂Σi/∂αr|θ=θ̂

, Σ̈i(r, s) = ∂2Σi/∂αr∂αs|θ=θ̂
, r, s =

1, . . . , k. Note that, when mi = 1,∀i (univariate case), the expressions above
reduce to the ones given in Galea, Paula and Uribe-Opazo (2003).

7



4.2 Perturbation Schemes

We will consider the following perturbation schemes in the model defined in
Section 2: case-weight, scale matrix, explanatory variable and response pertur-
bations. The sensitivity of some model assumptions may be checked through
appropriate perturbation schemes. In addition, this analysis can produce valu-
able information for the modeling process.

The ∆ matrix for each perturbation scheme assumes the form

∆ =



∆1

∆2


 ,

where ∆1 = ∂2L(θ|ω)/∂β∂ωT |
θ=θ̂,ω=ω0

, ∆2 = ∂2L(θ|ω)/∂α∂ωT |
θ=θ̂,ω=ω0

and
q is the dimension of the perturbation vector ω for the scheme under consid-
eration.

4.2.1 Case-weight Perturbation

First consider the following arbitrary attribution of weights for the observa-
tions in the log-likelihood function:

L(θ|ω) =
n∑

i=1

ωiLi(θ), (10)

where ω = (ω1, . . . , ωn)T are the weights, which satisfies 0 ≤ ωi ≤ 1, for
i = 1, . . . , n, and Li(θ) is defined as in (2). It is possible to note that, for
ωi = 0 and ωj = 1, j 6= i, we perform the exclusion of the ith subject from the
log-likelihood function. For this scheme the no perturbation vector is given by
ω0 = (1, . . . , 1)T ∈ Rn. Using the differentiation method we find

∂2L(θ|ω)

∂β∂ωi

∣∣∣∣
θ=θ̂,ω=ω0

= v̂iX
T
i Σ̂

−1

i (Y i −X iβ̂) and

∂2L(θ|ω)

∂αr∂ωi

∣∣∣∣
θ=θ̂,ω=ω0

= −1
2
{tr Σ̂−1

i Σ̇i(r)− v̂ir̂
T
i Σ̂

−1

i Σ̇i(r)Σ̂
−1

i r̂i},

for j = 1, . . . , k and i = 1, . . . , n. Here v̂i = vi(θ̂), i = 1, . . . , n.

This perturbation scheme allows to identify those observations that exercise
notable influence on the estimation process and consequently on the parameter
estimates.

Note that, when Σi(α) has a random effect structure (see, for instance, Jen-
nrich and Schluchter, 1986), the expressions for L̈ and ∆ reduce to the ones
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obtained by Lesaffre and Verbeke (1998) for the normal case (vi(θ) = 1). How-
ever, the models defined in this work extend the ones discussed by Lesaffre
and Verbeke in the sense of allowing structures such as Σi(α) = ZiD(α)ZT

i +
Ψi(α) as well as to permit a larger range of error distributions; the members
of the elliptical class are manipulated through vi = −2Wg(ui), ∀i.

4.2.2 Scale Matrix Perturbation

The perturbation scheme is introduced by considering the model

Y i ∼ ECmi
(X iβ, ω−1

i Σi, g), i = 1, . . . , n, (11)

where ω = (ω1, . . . , ωn)T ∈ Rn−{0} and ω0 = (1, . . . , 1)T such that L(θ|ω0) =
L(θ) given in (2). Taking differentials of L(θ|ω) with respect to θ and ωi, we
find

∂2L(θ|ω)

∂β∂ωi

∣∣∣∣
θ=θ̂,ω=ω0

= −2{Wg(ûi) + ûiW
′
g(ûi)}XT

i Σ̂
−1

i r̂i and

∂2L(θ|ω)

∂αr∂ωi

∣∣∣∣
θ=θ̂,ω=ω0

= −{Wg(ûi) + ûiW
′
g(ûi)}r̂T

i Σ̂
−1

i Σ̇i(r)Σ̂
−1

i r̂i,

for j = 1, . . . , k and i = 1, . . . , n, with Wg(ui) and W ′
g(ui) being evaluated at

ûi = r̂T
i Σ̂

−1

i r̂i.

This perturbation scheme may reveal those individuals that are most influ-
ential, in the sense, of the likelihood displacement on the scale structure and
consequently on the α estimate.

4.2.3 Explanatory Variable Perturbation

Here the interest is on perturbing a particular continuous explanatory variable,
namely xitω = xit +ωisi, where xit ∈ Rmi is the tth column of the matrix X i,
ωi denotes the mi× 1 perturbation vector and si is a scale factor. In this case
the perturbed log-likelihood function equals L(θ|ω) =

∑n
i=1 Li(θ|ω), where

Li(θ|ω) = −1
2
log |Σi|+ log g(uiω), (12)

uiω = rT
iωΣ

−1
i riω, riω = Y i −X iωβ and X iω = (xi1, . . . ,xit + ωisi, . . . ,xip)

for i = 1, . . . , n. Let N =
∑n

i=1 mi, thus the no perturbation vector is ω0 =
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0 ∈ RN . Taking differentials of L(θ|ω) with respect to θ and ωi, we obtain

∂2L(θ|ω)

∂β∂ωT
i

∣∣∣∣
θ=θ̂,ω=ω0

=− 2Wg(ûi)si(β̂tX
T
i − ctr̂

T
i )Σ̂

−1

i

+ 4W ′
g(ûi)siβ̂tX

T
i Σ̂

−1

i r̂ir̂
T
i Σ̂

−1

i and

∂2L(θ|ω)

∂αr∂ωT
i

∣∣∣∣
θ=θ̂,ω=ω0

= 2siβ̂tr̂
T
i Σ̂

−1

i Σ̇i(r)Σ̂
−1

i {Wg(ûi)Σ̂i + W ′
g(ûi)r̂ir̂

T
i }Σ̂

−1

i ,

for j = 1, . . . , k and i = 1, . . . , n. Here ct denotes a p× 1 vector with 1 at the
tth position and zero elsewhere and β̂t denotes the tth element of β̂.

This perturbation scheme allows to identify values of continuous explanatory
variables that are very sensitive in the sense of the likelihood displacement. In
particular, we may identify ill conditioning of the matrices X i, i = 1, . . . , n.

4.2.4 Response Perturbation

A perturbation of the observed response (Y T
1 , . . . , Y T

n )T is introduced by re-
placing Y i by Y iω = Y i + ωi, where ωi is an mi × 1 perturbation vector;
in this case one has ω0 = 0 with N =

∑n
i=1 mi. The perturbed log-likelihood

function is also given by L(θ|ω) =
∑n

i=1 Li(θ|ω), where

Li(θ|ω) = −1
2
log |Σi|+ log g(uiω), (13)

uiω = rT
iωΣ

−1
i riω and riω = Y iω −X iβ, i = 1, . . . , n. We obtain

∂2L(θ|ω)

∂β∂ωT
i

∣∣∣∣
θ=θ̂,ω=ω0

= −2XT
i Σ̂

−1

i {Wg(ûi)Σ̂i + 2W ′
g(ûi)r̂ir̂

T
i }Σ̂

−1

i and

∂2L(θ|ω)

∂αr∂ωT
i

∣∣∣∣
θ=θ̂,ω=ω0

= −2r̂T
i Σ̂

−1

i Σ̇i(r)Σ̂
−1

i {Wg(ûi)Σ̂i + W ′
g(ûi)r̂ir̂

T
i }Σ̂

−1

i ,

for r = 1, . . . , k and i = 1, . . . , n.

An interesting aspect of this perturbation scheme is the connection with gener-
alized leverage (Wei, Hu e Fung, 1998) as showed in Appendix B. For instance,
if α is fixed or known the index plot of Bi may reveal those observations with
high influence on their fitted values.

5 Application

To illustrate the methodology developed in the previous sections, we will con-
sider the orthodontic data set introduced by Potthoff and Roy (1964), where
dental measurements were made on 11 girls and 16 boys at ages 8, 10, 12 and
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14. The response variable was the distance, in millimeters, from the center
of pituitary to the pterygomaxillary fissure. Figure 1 displays the individual
profiles of girls and boys. Various authors have analyzed this data set. For in-
stance, Pendergast and Broffitt (1985) consider robust procedures for growth
curve models while Pinheiro, Liu and Wu (2001) used a linear mixed model
with the Student-t distribution in a hierarchical setting. On the other hand,
Pan, Fang and von Rosen (1997) and Pan and Bai (2003) present sensitivity
studies using the local influence method and Pan (2002) considers elimination
diagnostic procedures. More recently, Savalli, Paula and Cysneiros (2006) ap-
ply a score-type test for assessing the variance components. In all these works
outlying and influential observations were detected under normal error, indi-
cating that robustness methods could be used in order to reduce the influence
of such observations on the parameter estimates.
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Fig. 1. Individual profiles for the orthodontic data set.

Thus, we suggest for analyzing this data set the following random intercept-
slope elliptical model:

Y i = X iβ + Zibi + εi, i = 1, . . . , 27,

where Y i is a 4-dimensional random vector of responses from the ith obser-
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vation, X i is an 4× 4 design matrix such that,

X i =




1 8 0 0

1 10 0 0

1 12 0 0

1 14 0 0




for the girls’ group, and

X i =




0 0 1 8

0 0 1 10

0 0 1 12

0 0 1 14




for the boys’ group, β = (α1, α2, β1, β2)
T is the fixed parameter vector, where

α1 and β1 represent the intercept and the slope for the girls’ group while α2

and β2 correspond to the intercept and slope for the boys’ group, respectively,
and Zi is a 4× 2 design matrix of the random effects bi given by

ZT
i =




1 1 1 1

8 10 12 14


 , i = 1, . . . , 27.

In addition, we will assume the joint distribution of (Y T
i , bT

i )T as




Y i

bi


 ∼ EC6







X iβ

0


 ,




ZiDZT
i + σ2I4 ZiD

DZT
i D


 , g


 ,

where D is assumed to be an unstructured symmetric 2 × 2 matrix with
elements d11, d12 and d22. The inferences will be based on the marginal model
given by Y i ∼ EC4(X iβ,Σi(α), g), where Σi(α) = ZiDZT

i + σ2I4 with
α = (d11, d12, d22, σ

2)T . Note that this model takes the same form described
in Section 2.

5.1 Analyses of the Fitted Models

In our analysis we will assume Student-t, power exponential and normal errors
for comparative purposes. As suggested by Lange, Little and Taylor (1989) the
Schwarz information criterion was used for choosing among some values of the
degrees of freedom ν for the Student-t model and of the shape parameter λ

12



in the case of the power exponential distribution; we found ν = 5 and λ =
2
3
, respectively. Therefore, for both models heavy-tailed distributions will be

assumed for the errors. The maximum likelihood estimates of θ = (βT ,αT )T

for the three fitted models are given in Table 1.

Table 1
Parameter estimates of the three models fitted on the orthodontic data.

Normal Student-t Power Exponential

Parameter Estimate SE Estimate SE Estimate SE

α1 17.373 (1.182) 17.610 (0.992) 17.568 (1.095)

β1 0.480 (0.100) 0.459 (0.084) 0.462 (0.093)

α2 16.341 (0.980) 16.948 (0.823) 16.699 (0.908)

β2 0.784 (0.083) 0.716 (0.070) 0.744 (0.077)

d11 4.557 (4.672) 3.270 (2.950) 1.185 (1.100)

d12 -0.198 (0.379) -0.133 (0.233) -0.053 (0.088)

d22 0.024 (0.034) 0.020 (0.022) 0.007 (0.008)

σ2 1.716 (0.330) 0.887 (0.223) 0.358 (0.079)

We can notice from Table 1 that the intercept and slope estimates are similar
among the three fitted models, however the standard errors of the Student-t
and power exponential models are smaller than the ones of the normal model,
indicating that the two models with longer-than-normal tails seem to produce
more accurate maximum likelihood estimates. The inferences for the variance
components are similar for the three fitted models, but the estimates are not
comparable since they are in different scales.

In order to detect outlying observations in multivariate elliptical models the
Mahalanobis distance ui = (Y i−X iβ)TΣ−1

i (Y i−X iβ), i = 1, . . . , n (Little,
1988, Lange, Little and Taylor, 1989 and Copt and Victoria-Feser, 2006) has
been considered. For the normal case, one has that ui follows a chi-squared
distribution with mi degrees of freedom. Thus, we can use as cutoff points
the quantiles χ2

mi
(ξ), where 0 < ξ < 1, to identify outliers. The modified

Mahalanobis distances Fi = ui/mi ∼ Fmi,ν and Ti = Uλ
i ∼ Gamma(1

2
, mi

2λ
) may

be also considered for the Student-t distribution with ν degrees of freedom and
power exponential distribution with shape parameter λ, respectively. Figure 2
displays such distances for the three fitted models. The cutoff lines corresponds
to the quantile ξ = 0.975.

We can see from these figures that observations 20 and 24, which correspond
to the measures of the 9th and 13th boys, appear as possible outliers. The es-
timated weights for these two boys are the smallest ones for both fitted models
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Fig. 2. Index plots of the Mahalanobis distances for the three fitted models.

with heavy-tailed error distributions (see Table 2), confirming the robustness
aspects of the maximum likelihood estimates against outlying observations.
For the normal case one has (vi(θ) = 1,∀i).
Table 2
Estimated weights for the Student-t and power exponential models.

Subject 1 2 3 4 5 6 7 8 9

Student-t 1.17 1.18 0.94 1.30 1.43 1.44 1.59 1.33 1.31

power exponential 0.35 0.36 0.29 0.37 0.45 0.43 0.56 0.40 0.38

Subject 10 11 12 13 14 15 16 17 18

Student-t 0.71 0.77 0.66 1.08 0.93 0.66 0.80 1.49 1.24

power exponential 0.24 0.25 0.24 0.32 0.29 0.23 0.26 0.46 0.37

Subject 19 20 21 22 23 24 25 26 27

Student-t 0.67 0.17 0.64 1.10 0.99 0.23 1.12 0.92 1.13

power exponential 0.24 0.14 0.22 0.32 0.31 0.15 0.33 0.30 0.32

For the purpose of identifying influential observations in the models fitted on
the orthodontic data, some index plots of Bi will be performed in the sequel
under three perturbation schemes discussed in the Section 4.

Case-weight perturbation. Based on this perturbation scheme, the index plots
of Bi(β) and Bi(α) for the three fitted models are displayed in Figures 3-4,
respectively.

We can notice under normal error that subject 24 is the most influential on β̂ as
well as with smaller influence subjects 10, 11, 15 and 21. No one observation
appears with outstanding influence under Student-t and power exponential
errors. These results agree with the ones reported by Pan, Fang and von
Rosen (1997), Pan (2002) and Pan and Bai (2003), and also with the comments
given in Pinheiro, Liu and Wu (2001) and Savalli, Paula and Cysneiros (2006).
Looking at Figure 4 we can observe the large influence of observation 20 on
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Fig. 3. Index plots of Bi for β̂ under case-weight perturbation.
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Fig. 4. Index plots of Bi for α̂ under case-weight perturbation.

α̂ under normal error. The index plots of Bi(θ) (omitted here) are similar to
the ones given in Figure 4.

Scale matrix perturbation. Figures 5 and 6 show the index plots of Bi(β) and
Bi(α), for the normal, Student-t and power exponential models. The index
plots of Bi(θ) are not presented here because they are very similar to the ones
given in Figure 6.
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Fig. 5. Index plots of Bi for β̂ under scale matrix perturbation.

Figures 5 and 6 are similar to Figures 3 and 4, except that under Student-
t error five observations appear with moderate influence on β̂ while under
power exponential error one observation is pointed out with some influence on
α̂. These results agree with the ones reported by Pan, Fang and von Rosen
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(1997), Pan (2002) and Pan and Bai (2003) under normal error.

Response perturbation. Here the response perturbation scheme is considered
and the index plots of Bi(θ̂) are given in Figure 7. It is interesting to note in
this case that we can also extract the influence of each individual measurement.
From Figure 7 we can notice some influence under normal error, particularly
when the responses of the individuals 20 and 24 are perturbed.

Thus, our main conclusion for this example is that the maximum likelihood
estimates from the elliptical models with heavy-tailed error distributions seem
to be more robust against outlying observations, as expected, but also against
the three perturbation schemes considered for illustration than the estimates
from the normal model.

0.0

0.05

0.10

0.15

0.20

8 9 10 12 14

14 16

8 9 10 12 14

11 8

8 9 10 12 14

21 22

8 9 10 12 14

10 26

8 9 10 12 14

15

13 4 12 6 17 1 3 9

0.0

0.05

0.10

0.15

0.20

27
0.0

0.05

0.10

0.15

0.20

2

8 9 10 12 14

23 5

8 9 10 12 14

19 18

8 9 10 12 14

25 7

8 9 10 12 14

24 20

Age 

B
i 

Normal Power exponential Student-t

Fig. 7. Index plots of Bi for θ̂ under response perturbation.

16



6 Concluding Remarks

The present work generalizes the results given in Lesaffre and Verbeke (1998)
for a large class of linear models with longitudinal structure that includes both
light- and heavy-tailed error distributions. We allow the inclusion of structured
forms for the scale matrix Σi. Many structures typically used for modeling
repeated-measurement data, such that, compound symmetric, heterogeneous,
Toeplitz and unstructured are known as linear scale structures. In these cases,
we can have important simplifications in the differential expressions d2

θL(θ)
and d2

θωL(θ|ω) for different perturbation schemes using the fact that dα =
Di dvecΣi, where Di is the duplication matrix given by Nel (1980, Sec. 6).
Then, dα = Di dvecΣi and d2α = 0. However, this property does not follow,
for instance, for structures such as ARMA (see, for instance, Jennrich and
Schluchter, 1986). Due to this consideration our derivations were made for the
general case.

Further work on influence diagnostics for linear mixed models considering a
subclass of the elliptically contoured distributions, known as scale mixtures
of normal distributions, is being developed by the authors and will be the
subject of an incoming paper. Such models are one natural extension of the
hierarchical model described in Pinheiro, Liu and Wu (2001).
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A Differential Calculations

In this Appendix we derive the matrices L̈
−1

and ∆ for different perturbation
schemes under the elliptical linear model with longitudinal structure. These
measures are obtained efficiently using the differentiation method described
in Magnus and Neudecker (1988).
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A.1 Observed Information Matrix

Using results of matrix differentiation we obtain d2
θL(θ) =

∑n
i=1 d2

θLi(θ), with

dβLi(θ) = −2Wg(ui)r
T
i Σ−1

i X i dβ and (A.1)

d2
βLi(θ) = 2( dβ)T XT

i Σ−1
i {Wg(ui)Σi + 2W ′

g(ui)rir
T
i }Σ−1

i X i dβ, (A.2)

where ri = Y i −X iβ. From (A.1) it follows that

d2
αβLi(θ) = 2rT

i Σ−1
i ( dΣi)Σ

−1
i {Wg(ui)Σi + W ′

g(ui)rir
T
i }Σ−1

i X i dβ. (A.3)

Finally, the first and second differentials of Li(θ) with respect to α are given
by the expressions

dαLi(θ) = −1
2
trΣ−1

i dΣi −Wg(ui)r
T
i Σ−1

i ( dΣi)Σ
−1
i ri and (A.4)

d2
αLi(θ) = 1

2
trΣ−1

i ( dΣi)Σ
−1
i dΣi − 1

2
trΣ−1

i d2Σi

+ rT
i Σ−1

i {W ′
g(ui)( dΣi)Σ

−1
i rir

T
i Σ−1

i ( dΣi)−Wg(ui) d2Σi

+ Wg(ui)( dΣi)Σ
−1
i dΣi + Wg(ui)( dΣi)Σ

−1
i dΣi}Σ−1

i ri. (A.5)

Evaluating (A.1)-(A.5) at θ = θ̂ we obtain the observed information matrix
given in equation (9).

A.2 Perturbation Schemes

For each perturbation scheme we derive the differential d2
θωL(θ|ω). We obtain

the matrix ∆ = ∂2L(θ|ω)/∂θ∂ωT |
θ=θ̂,ω=ω0

by evaluating d2
θωL(θ|ω) at θ = θ̂

and ω = ω0.

A.2.1 Case-weights Perturbation

For this perturbation scheme we have

d2
βωi

L(θ|ω) = vi( dβ)T XT
i Σ−1

i (Y i −X iβ) dωi and

d2
αωi

L(θ|ω) = −1
2
{trΣ−1

i ( dΣi)− vir
T
i Σ−1

i ( dΣi)Σ
−1
i ri} dωi,

with vi = vi(θ) and ri = Y i −X iβ, for i = 1, . . . , n.
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A.2.2 Scale Matrix Perturbation

Taking differentials of L(θ|ω) with respect to θ and ωi, we obtain

d2
βωi

L(θ|ω) = −2{Wg(uiω) + ωiuiW
′
g(uiω)}( dβ)T XT

i Σ−1
i ri dωi and

d2
αωi

L(θ|ω) = −{Wg(uiω) + ωiuiW
′
g(uiω)}rT

i Σ−1
i ( dΣi)Σ

−1
i ri dωi,

where ri = Y i −X iβ and uiω = ωiui with ui = rT
i Σ−1

i ri, i = 1, . . . , n.

A.2.3 Explanatory Variable Perturbation

Using the differentiation method, we have that

d2
βωi

L(θ|ω) = −si2Wg(uiω)( dβ)T (cT
t βX iω − ctr

T
iω)Σ−1

i dωi

+ si4W
′
g(uiω)cT

t β( dβ)T XT
iωΣ

−1
i riωrT

iωΣ
−1
i dωi and

d2
αωi

L(θ|ω) = 2sic
T
t βrT

iωΣ
−1
i ( dΣi)Σ

−1
i {Wg(uiω)Σi + W ′

g(uiω)riωrT
iω}Σ−1

i dωi,

where X iω = X i + siωic
T
t , with si being a scale factor, ωi an mi × 1 pertur-

bation vector and ct a p-dimensional vector with 1 at tth position and zero
elsewhere. Here riω = ri−sic

T
t βωi and uiω = rT

iωΣ
−1
i riω, with ri = Y i−X iβ,

for i = 1, . . . , n.

A.2.4 Response Perturbation

For this scheme it is possible to show that

d2
βωi

L(θ|ω) = −2( dβ)T XT
i Σ−1

i {Wg(uiω)Σi + 2W ′
g(uiω)riωrT

iω}Σ−1
i dωi and

d2
αωi

L(θ|ω) = −2rT
iωΣ

−1
i ( dΣi)Σ

−1
i {Wg(uiω)Σi + W ′

g(uiω)riωrT
iω}Σ−1

i dωi,

where uiω = rT
iωΣ

−1
i riω and riω = ri + ωi, with ωi denoting an mi × 1

perturbation vector and ri = Y i −X iβ, i = 1, . . . , n.

B Connection between Local Influence and Generalized Leverage

In order to examine the relationship between local influence and generalized
leverage under additive perturbations in the response values we will assume
that α is fixed. Thus, it follows from Wei, Hu e Fung (1998) that the gener-
alized leverage matrix takes the form

GL(β̂) = X{−L̈(β̂)}−1XT A = X
( n∑

i=1

XT
i AiX i

)−1

XT A,
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where XT = (XT
1 , . . . , XT

n ) and A = blc diag(A1, . . . , An) with Ai = −2Σ̂
−1

i

{Wg(ûi)Σ̂i + 2Wg(ûi)r̂ir̂
T
i }Σ̂

−1

i , for i = 1, . . . , n. On the other hand, the
normal curvature in this case is given by C`(β) = 2|`T B`|, where B =
∆T

1 {L̈(β̂)}−1∆1. Since ∆1 = XT A, we obtain the relationship B = AGL(β̂).
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