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Abstract In this work the Schwarz Information Criterion (SIC) is used in
order to locate a change-point in linear regression models with independent
errors distributed according to the Student-¢ distribution. The methodology
is applied to data sets from the financial area.
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1 Introduction

The problem of change-points has been a topic of permanent interest in
Statistical literature. Chernoff and Zacks (1964), Gadner (1969), Hawkins
(1992), Sen and Srivastava (1975) and Worsley (1979) have studied the
problem of change points in the mean of a normal distribution. Horvath
(1993) and Chen and Gupta (1995) studied the problem of simultaneous
change-points in the mean and variance, also of a normal distribution. For
a review and many further results along these lines we refer to Csorgd and
Horvéth (1997).

The corresponding problem of change-points in the coefficients of a linear
regression model has also been analyzed, under the assumption of normal-
ity, by several authors. Quant (1958, 1960) discusses estimates and hypothe-
ses tests for a regression model in two phases. Brown, Durbin and Evans
(1975) use recursive residuals to detect change-points in regression models.
Hawkins (1989) uses the union-intersection principle and Kim (1994) the
likelihood ratio test to detect change-points. Csérgé and Horvéth (1997)
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discuss some asymptotic results about this topic. Recently, Chen (1998)
proposes the use of the Schwarz information criterion, SIC, to detect a
change-point in linear regression models, also under the assumption of nor-
mality. See also Chen and Gupta (2001).

Let us consider a sequence of observations, (x7, Y1), (x3,Ya), ..., (x1,Yy,).
The objective of this paper is to test hypothesis of the form:

Hy:Y,=x'B+e, i=12...,n, (1)
i.e, regression coefficients does not change, against

Hy:Y; =x!B +e, i=1,...,k, (2)
Y; :x;fF,BQ—l—ei, i=k+1,...,n.

where,

/61 = (ﬂ(%ﬂla cee 7ﬂp—1)Ta /62 = (5&/6’1"7 .. aﬂ;—l)Ta

that is, a change exists (in the regression coefficients) in an unknown position
k, denominated change-point.

In this work Chen’s (1998) results are extended to the independent
Student-t linear regression model. The use of the ¢-distribution as an alterna-
tive to the normal distribution, has frequently been suggested in literature,
for example, Lange, Little and Taylor (1989) propose the t-distribution for
robust modeling in linear regression models. Firstly, the methodology des-
cribed by Chen (1998) is presented. Later on, the procedure of detection
of change-points is presented for independent Student-t linear regression
models. Finally, this methodology is applied to a group of data from the
literature and to data from Chilean stock market. A comparison with the
normal model is carried out in both cases.

2 Detection of a change-point in Normal linear regression models

Consider the linear regression model
T .
Yi=x;B+e¢, t=1,...,n,

where x;, i = 1,...,n, corresponds to the i-th line of the design, X matrix
nxp, B = (Bo,B1,--,0p—1)T is the vector of unknown parameters, and
¢; indicates a random error. In this section we suppose that the errors ¢;
are independent random variables, each one with a distribution N(0,0?),
where 02 is an unknown parameter (02 > 0). In this way, we have that
responses, Y;, ¢ = 1,...,n, are independent random variables distributed as
N(xIB,0?).

For the change-point hypothesis (equations (1) and (2)) consider the
following notation, where k =p,...,n —p,

Yl = (Y17Y27"'7Yk)Ta Y2 = (Yk+17"'7Yn)Ta
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The work by Chen (1998) proposes transforming the process of hypothesis
testing in a procedure of model selection using the Schwarz Information
Criterion, (SIC) defined by:

-~

SIC = —2L(0) + slogn,

~

where L(0) corresponds to the log-likelihood function evaluated on the max-
imum likelihood estimate of the parameters, s is the number of model pa-
rameters and n is the sample size. Note that maximizing the log-likelihood
function is equivalent to minimizing the Schwarz information criterion.

Under Hy, there is a model that does not present any change in the
regression coefficients; on the other hand, under H; there is a collection of
models with change-points at the positions p or p+ 1 or ... or n — p. The
objective is, therefore, to select a model from the previous group.

The maximum likelihood estimates for 8 = (ET,Uz)T, under Hy, are
given by

b=(X"X)"'XTy, 2= 1 (Y —Xb)T(Y — Xb).
n

The Schwarz information criterion under Hy, denoted by SIC(n), is given
for:

-~

—2Lo(0)+ (p+1)logn
= nlogQ(b) + n(log27 + 1) + (p+ 1 —n)logn,

SIC(n)

-~

where Lg(0) corresponds to the maximum of the log-likelihood function
under Hy and Q(b) = (Y — Xb)T(Y — Xb).

Consider the model under the alternative hypothesis, i.e, that with
a change-point at the position k, (k = p,...,n — p). In this case, 8 =
(BT, 82,07, and the maximum likelihood estimates turn out to be

by = (X{X;)'X(Y, by = (X3X,) ' XY,
R 1
52 = - (V1 = X)) T(YV1 — Xiby) + (Yo — Xobo) T (Vs — Xoby)).

then the Schwarz information criterion under Hy, denoted by SIC(k), for
k=p,....,n—mp,is

~

SIC(k) = —2Li(0)+ (2p+1)logn
= nlog{Q(b1) + Q(b2)} + n(log2w + 1) + (2p+ 1 — n) logn,

o~

where L (0) corresponds to the maximum of the log-likelihood function
under H;.
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Selection Criteria

The selection criteria is to choose a model with a change-point in the k

position, if for some k
SIC(n) > SIC(k).
When the null hypothesis is rejected, the maximum likelihood estimate of

the change-point in the regression coefficients, denoted by E, must satisfy,

SIC(k) = min{SIC(k) : p <k < n—p},

= max{Lg(0):p <k <n-—p}

3 Detection of a change-point in independent Student-t linear
regression models

Consider the independent Student-¢ linear regression model, where the errors
€1,€2, ..., €, are independent and identically random variables with ¢(0, ¢, v)
distribution. Next, the maximum likelihood estimates under both hypothe-
ses are described: one without changes in the regression coefficients (Hy)
and the other with a change in a given position k. The EM algorithm is
used to estimate the parameters due to its simple implementation.

In the first place the estimates are presented under Hy. In this case the
log-likelihood function of 8 = (BT, )7 is

Lo(0) =nlog K (v) — g log ¢ — VT—H Zlog{l +d;(B8,9)/v},
i=1

where

=8

ST
|

=N
ST
i
<
S~—

K(v) = 2 7
The score functions are given by

U = 3 Y uli - xTB)x = SXTV(Y - X),
=1

n J— n 1
U(¢) = —— + — (Y —xIB)?2 = —— 4+ —
©) = 55+ g LX< 5 4 55 Qv(O)
where V = diag(vy, va, ..., v,), with
v+1 .
'Ui:/ui():ﬁd?a i=1,...,n,

Qv(8) = (Y —~XB)'V(Y - XB).
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The likelihood equations correspond to a nonlinear system of equations
which should be solved via iterative methods.

In this work we suppose that the degrees of freedom v is known. Fernandez
and Steel (1999), alert on the estimate v and they notice that in this case
the function of log-likelihood is unbounded and that indeed it corresponds
to an nonregular estimation problem. Due to this, it is suggested (see Lange,
Little and Taylor, 1989) to estimate 8 = (ﬁT, ¢)T considering a set of ac-
ceptable values for v and to choose the one that maximizes the function of
log-likelihood. In our case, the Schwarz information criterion will be used
to choose among some values of v.

The estimation using the EM algorithm will now be considered. The
observed log-likelihood function under the model without changes, turns
out to be

1 1
5 108 [V] = 5 Qu(8).

The EM algorithm maximizes the log-likelihood iteratively through two
stages. The (r+1)-th step of the algorithm is summarized as follows:

Lo(Y|v; 0) = —g log 276 +

E Step: Starting from initial estimates for @ = (87, $)T, weight estimates

vlm are obtained through the conditional expectations
- 1
EUY:07) =) = —— 2
v+ dz (/B(r)v ¢(T))
with

d2 (r)y _ (K - X;rﬂ(r))z
i - ¢(r) )
and where the independent random variables, U; ~ Gamma((v+1)/2, (v +

d7)/2).

M Step: Using the weights obtained at the E step of the algorithm, the
maximum likelihood estimates are obtained,

i=1,2,...,n

T r — T T 1 r
BUTY = (XIVOX)TIXIVOY, 60 =~ Quin (B7),

with
v = dz’ag(v§7'), vgl), e 71}7(:))
and the algorithm proceeds between E and M step until the sequence o
converge.
Under a change model on the regression coefficients in a given k position,

it is possible to show that the log-likelihood function turns out to be

k
Li(8) = nlog K(v) — & logé — 203" log{1 + d2(8,,6)/v)
i=1

n

Z log{1 + d?(ﬁQﬂ ®)/v},

i=k+1

v+1
2
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where 6 = (,8{, ﬁg, #)T and the associated score functions are given by:

Uwo=%Xﬁmm=Xﬁm Uwa=éX%wnPXﬁﬁ
1
ww=—%+z§mwwa+@amm
with

V, = diag(v1,va,...,v), Vo = diag(vis1,-..,0n).

To develop the estimate procedure using the EM algorithm, the observed
log-likelihood function under the model with a change in a k position (given)
takes the form:

1

n n 1
Ly(Y|v;0) = —510g27r - glog(b-i- 510g|V1| - %

Qvl (ﬁl)

1 1
—|—§log|V2\ - % Qv,(Bs)

The (r+1)-th iteration of the algorithm of expectation maximize consists
in two steps, described as follows:

E Step: The conditional expectations vlm should be obtained, this are
given by
v+1

v+ d2(67))

which are based on the following weights function,

B(U]Y;:07) = v =

(v; —x/ 8"

200 = g i hBek
1 Yi-xI'8")
T,Z— + ,...,n.

where the independent random variables U; follow a Gamma distribution
with parameters (v + 1)/2 and (v + d?)/2.

M Step: Using the estimates obtained at the E step, likelihood estimates
are calculated by:

) XIVOX) XV,
- XIVEX) XV

1 r "
D = E{QVY) (/3(1 )) + Qvé” (Bé ))}
with

VY) = aliag(vY)7 vg), e ,v,(:)), Vér) = diag(v,(lgl, e ,vg)).
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The implementation of the EM algorithm under Hy, requires a slight modifi-
cation of the iteratively reweighted least square, because the scale parameter
¢ remains fized along the sequence of observations.

Now the Schwarz information criterion is presented under the model
without changes in the regression coefficients and under the model with a
change in the k given position. Under Hy, we have that

-~

—2Lo(0)+ (p+1)logn (3)
= 2nlogK(v)+n log ¢ + (p+1)logn

SIC(n)

-~

+r+1) " log{l+d2(B,¢)/v}

=1

and under H; (for given k), the Schwarz information criterion is given by

~

—2L(0)+ (2p+1)logn (4)
—2nlog K(v)+n log ¢ + (2p+1)logn

SIC(k)

k n
v+ D[ tog{1+ @By, 0)/v} + Y log{l +d2(By, 6)/v}].
=1

i=k+1

Note that when v — oo the expressions corresponding to the normal case
(Chen, 1998) are obtained.

Selection Criteria

Using the Schwarz information criterion (equations (3) and (4)) the hypo-
thesis of no change on the regression coefficients Hy is rejected if:

SIC(n) > min{SIC(k) :p <k <n—p}.
Or equivalently if, A, < 0, where
A, =min{SIC(k) — SIC(n) : p < k <n —p}.

If H; is accepted, i.e, there is a change-point at the regression coefficients,
then the change position is estimated via maximum likelihood, in a way
that £ has to satisfy.

-~

SIC(k) =min{SIC(k):p <k <n—p}.

To make conclusions about change-points statistically significant, the level
of significance a and its associated critical value ¢, (¢, > 0) are introduced.
So instead of rejecting Hy when A, < 0, the hipothesis of no change on the
regression coefficients is rejected if

Ay + o <0 (5)
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where ¢, satisfies the relationship:

1—a=P[A,+cq <0|Hy] = P[Z, < plogn + ¢4 |Ho|
where Z,, = max{—Q(Lo(a) —Lk(g)) :p < k < n—p} and using the theorem
1.3.1 in Csorgé and Horvath (1997), we have that

1

Ca = m{dp(log n) — loglog[l — a + exp(—2edr°e™))|=1/212 _ p1ogn

(6)

with

a(z) = 2logz)'/?,  dy(z) = 2logx + gloglogx — logf(g)

Therefore we propose to use (6) to calculate approximate ¢, values, for a
level of significance a.

If it is suspected that a change-point exists in the k position, when
carrying out the test of change by means of Z,,, there are n — 2p tests being
done out, one for each k. A useful technique for finding approximates critical
values is based on the inequality of Bonferroni. Using this method one has
the following criteria, to reject Hy at a nominal « level if

Zn > X%—o{/(n—Qp) (p)

For the normal case, LRT has an exact distribution, in which case, Hy is
rejected if Z, > Fi_q/(n—2p)(p,n — 2p).

Some Considerations

It is evident that implementing a routine for change-points detection by
means of the SIC procedure is quite simple; it is also possible to observe
that the methodology of detection for changes in the regression coeflicients
considered here is equivalent to the procedure for testing a change-point us-
ing the Likelihood ratio test given in Csorgé and Horvéath (1997). However,
they notice that the region of rejection of the hypothesis is conservative and
indeed large samples should be used in (6) to test Hy against Hj.

The methodology for detection of change-points delineated here corres-
ponds to a test of a unique change. Chen and Gupta (1997) mention a
method proposed by Vostrikova (1981) who outlines a procedure of binary
segmentation, in which the problem of detection of multiple changes is sub-
divided in to equivalent simple detection processes.

The estimation of parameters for the problem of detection of changes,
in the regression coefficients and the approach of model selection conforms
the base of an S-PLUS routine, created for developing these calculations.
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4 Applications

In this section, the methodology derived in this work is applied to data
frequently analyzed in the literature (see Chen (1998) and Chang and Huang
(1997)). Data of returns from a share belonging the Chilean stock market
is also considered.

4.1 Holbert’s data (Chen, 1998)

Holbert (1982) use a simple linear regression model with changes in the
coefficients from a Bayesian point of view. Later on, Chen (1998) analyzed
this data using the SIC method to detect changes in the mean for Normal
linear regression models. In this section, Holbert data will be used to illus-
trate the SIC procedure, for the detection of change-points in independent
Student-t linear regression models.

Sales volume (in millions) of the Boston stock market (BSE) is consid-
ered as a response variable and the sales volume of the New York stock
market (NYAMSE) as a regressive variable. The data corresponds to the
period between January 1967 and November 1969.

Figure 1 shows the scatter plot of Holbert’s data.
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Fig. 1 Holbert’s data scatter plot
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The SIC procedure was applied for the detection of changes, for the
Student-t linear regression model with a set of values for the degrees of
freedom, as well as for the normal model. The summary of results is in the
following table.

Table 1 Results of SIC Procedure

t Model SIC(n) minSIC(k) k
v=1 363.358 357.416 9
v=4 358.082 355.035 23
v=2_ 359.332 356.669 23
v =230 360.855 358.074 23
vV — 00 361.453 358.475 23

A possible change-point is detected in the period k= 23, and this result
is in concordance with the conclusion obtained by Chen (1998).

Using the Schwarz Information Criterion, the Student-t model with v =
4 was chosen to develop some later analysis. The parameter estimates for
the model with a change-point in position 23 is presented. The results for
the normal model are also presented.

There is an appreciable difference on the coefficients estimates for the
Student-t model with v = 4 degrees of freedom and the normal model; in
particular, the difference among the intercepts of both models is evident.
However, the scatter plot with fitted regression lines for the model with a
change-point in position 23, do not reveal a remarkable difference between
the normal model and the Student-t model with v = 4 (see Table 2 and
Figure 2).

Table 2 Estimates for the model with a change in the 23rd position.

t Model Cases Estimate
Bo B1
v=4 1 to 23 -96.0781  0.0162

24 to 35 15.2759  0.0065
vV — 00 1to23 -110.5475 0.0178
24 to 35 11.0747  0.0067

In accordance with the above-mentioned, the condition (5) was verified,
obtaining that detected changes do not turn out to be significant. The anal-
ysis by means of the Bonferroni method reveals that the Student-t model
for Holbert’s data does not detect changes in the coefficients. Note however,
that the sample size for these data is small, so that this decision can be
conservative.
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v=4 vV — 00
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Fig. 2 Scatter plots and adjust regression

Observations in A, (- - -) correspond to previous periods to observation
24 (from where a change was detected in the sequence). Notice that, in spite
of perceiving a graphic difference in the fitted regression lines, these changes
are not significant.

v=4 vV — 00

sic
358 360 362
I L L
sic
364 266 368
I L I

360
L

356
L

Fig. 3 Diagram SIC(k) vs. k

The graph of the Schwarz information criterion against the index has
been suggested, i.e, SIC(k) vs. k, because it is possible to obtain the max-
imum likelihood estimate of k from this graph. In both diagrams the 23rd
position may be as a possible maximum likelihood estimate for the change-
point. Note, however, that for the normal model, the SIC(k) values are
bigger than these for the Student-t model with v = 4 and, therefore, it is
suggested to use this last one as an alternative to the normal distribution.

In Osorio (2001) the vulnerability of the normal model to atypical ob-

servations is shown, indeed, some diagrams of local influence are considered
indicating that for the ¢t with v = 4 this influence is smaller.
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5

5

ordered data values

ordered data values

quantiles of standard normal quantiles of standard normal

Fig. 4 Quantile plots

From the quantile plots a slight deviation of the supposed distributional
is appreciated for the ¢ with v = 4 as for the Normal model (v — o0), there-
fore, the quantile plots do not offer conclusive information in this respect.

4.2 Detection of a change in the systematic risk

The Capital Asset Pricing Model (CAPM) establishes that the expected
return on an asset is equal to the risk free rate return plus a prize for risk.
This model was independently derived by Sharpe (1964), Lintner (1965),
and Mossin (1966). Let r be a random variable, which denotes the asset
return. According to the CAPM, the expected value of r, is given by:

E(r):rf+ﬂ(E(rm)7Tf)v (7)

where r¢ is the risk free rate return, 7, corresponds to the market return
and [ denotes the systematic risk of the asset. An extension of the model
(7) given by

E(r) —rp=a+ B(E(rm) —7y), (8)

incorporates a coefficient o that denotes the asset return independent to
the market fluctuations. It is usual to consider a linear regression model to
estimate a and [, this is, given a group of n observations for the return of
the asset, the market return and the risk free return, one has

e =T =0+ B(rme — ) €, t=1,...,n, (9)
where 7; denotes the return of the asset in the period ¢, r,,; is the market
return in the period ¢, t = 1,...,n. Here we suppose that €1, €s,...,€, are
independent random errors such that e; ~ t(0,¢,v), t =1,...,n.

The main interest in the CAPM model is to carry out inferences regard-
ing the systematic risk 5. To estimate the beta parameter from (9), the least
squares method is frequently used. Also to carry out inferences regarding
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the parameters, we generally suppose that the returns follow a normal dis-
tribution. It is important to note that the estimate of the systematic risk on
Latin American markets (emergent) has some peculiarities, such as atypical
observations and points leverages. In this respect there are robust estimates
for B (see Duarte and Mendes (1997)); however, changes in the systematic
risk have not been considered.

The CAPM was used to data corresponding to monthly returns, adjusted
by equity variations, of “Vineyards Concha y Toro”. IPSA, was used as the
return for the market and as risk free rate was used the interest rate in the
sale of discounted bonds of the Central Bank (PDBC) based monthly. The
data corresponds to the period among the months of March 1990 to April
1999. Figure 5 shows the scatter plot for the data asset Vineyards Concha
y Toro.
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Fig. 5 Vineyard Concha y Toro data scatter plot

The procedure of detection of a point of change was developed consider-
ing a independent ¢ linear regression model for a set of values for freedom
degrees using SIC procedure. The results are as follows:

Table 3 Results of SIC Procedure.

t Model SIC(n) minSIC(k)  k

v=1 -172.304 -175.924 100
v=4 -172.136 -173.098 100
v=2_ -159.518 -157.776 (100)
v =230 -135.362 -135.803 25

v—oo -116.382 -123.829 25
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Note that the possible periods detected as change-points for the normal
model and for the ¢ model, with v = 1 or 4, are different; also, for the
t model with 8 degrees of freedom a change is not detected (the position
among parenthesis corresponds to min STC(k)). However, the SIC for the
Student-t model with v =1 or 4 are smaller than for the normal model.

Using the minimum information approach, the ¢ model was chosen with
1 degree of freedom. In what follows this model will be used to carry out
later analysis. The estimate of parameters was developed for the model with
a change in position k, obtaining the following,

Table 4 Estimate for the model with a change in position k.

t Model Cases Estimates
a B
v=1 1 to 100 -0.0069 0.3021
101 to 110 -0.0111  1.1096
v — 00 1 to 25 0.0372  1.5995
26 to 110  -0.0019  0.4799

As a result of some interest, to verify that for the normal distribution
the change detected in position 25 is significant to 5%, on the other hand
for the t-distribution with any one of the considered degrees of freedom, the
changes are not significant, and therefore for these data, the Student-t model
does not detect any change in the regression coefficients. This decision is
ratified when carrying out the procedure of Bonferroni. Indeed, a change is
only detected in the coefficients when it is considered the normal model.

v=1 vV — 00

Concha y Toro
02 04

|

>

IS

\

\

Concha y Toro
|

02 00

Fig. 6 Dispersion and straight line of Regression Diagram

The observations in A, ( - - - ) correspond to the previous periods to the
point where a change happens in the sequence. Although for the normal
model a point of change is detected in the regression coeflicients, as for the
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t model this change is not significant. Consider the results of the estimate
parameters for the model without changes that is presented in the following
table:

Table 5 Estimate for the model without changes in the coefficients.

t Model log-likelihood a 1]
vr=1 93.2026 -0.0084  0.3462
v — 00 65.2417 0.0129  0.8884

Starting from this, the use the Student-t model with v = 1 is suggested,
to estimate the systematic risk through the estimates for § in the model
that does not present any change. R R

The diagram was also carried out B(;) vs. i (see Figure 7), where (3;
denotes the maximum likelihood estimator of 3 without the i-th observation.
Here certain stability is noticed by the (;), so that it is clear that the ¢t model
reduces the influence of atypical observations.

v=1 vV — 00

Fig. 7 E(i) vs. ¢ plot

The diagram was also obtained B{ k) vs. k where k indicates the number
of observations included for the calculation of the estimate of 3.

In spite of the natural fluctuations of this estimates when having few
observations, note that this graph reveals the position of change detected
by the normal model. However, a greater stability for the Student-¢ model
with v = 1, is appreciated, by this we perceive a certain insensibility of the
Student-t model in the face of changes in the coefficients in this case.



16 Felipe Osorio, Manuel Galea

beta(k)

Fig. 8 Diagram E{k} vs. k

Also notice that the Student-t model with v = 1 has values STC(k)
smaller than of the Normal model. Starting from the approach of minimum
information the use of the Student-t distribution is suggested with v =1
instead of the normal distribution for this data set.

v=1 vV — 00
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Fig. 9 SIC(k) Diagram vs. k

In Osorio (2001) there are remarks on the great impact that the period
of February 28 1991 (observation 12) has on the MLE for the normal model,
on the contrary of the t model with v = 1 where the influence of the periods
is smaller. Also, one can observe an evident deviation from the supposed
distributional for the normal model (see Figure 10). Therefore, the above-
mentioned suggests the use of distribution ¢ with v = 1.

Consider tables 4 and 5, note that when using the ¢ model with v =
1 the appreciation that one has of the systematic risk is different from
that of the normal model. Indeed, when using the estimates of parameters
obtained by means of the ¢ with » = 1 (model does not present changes
in the coeflicients), the asset of Vineyards Concha y Toro is less risky than
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for the normal model. This information can be particularly useful for risk
administrators or of stocks portfolios.

v=1 vV — 00

a

ordered data values

quantiles of standard normal quantiles of standard normal

Fig. 10 Quantile Plots

Conclusion

It is evident that the detection of points of change through the SIC offers
an important simplification, allowing a simple computer implementation.
It was also indicated that the approach of testing hypothesis proposed in
this work is equivalent to the likelihood ratio test for locate change points,
therefore an expression was presented for the calculation of approximate
quantile values and this way testing hypothesis with a significant level. It is
of interest to notice that this expression is valid for any distribution of the
errors so that the decision can be conservative for small sample sizes.
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