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Gaussian process regression

Gaussian process regression (Kriging model)

Study of a single realization of a Gaussian process x → Y (x) on a domain X ⊂ Rd
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Goal
Predicting the continuous realization function, from a finite number of observation points

Applications : Computer experiments, machine learning, geosciences,. . .
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The Gaussian process

The Gaussian process
We consider that the Gaussian process is centered, ∀x ,E(Y (x)) = 0

The Gaussian process is hence characterized by its covariance function

The covariance function
The function K1 : X 2 → R, defined by K1(x1, x2) = cov(Y (x1),Y (x2))

In most classical cases :

Stationarity : K1(x1, x2) = K1(x1 − x2)

Continuity : K1(x) is continuous⇒ Gaussian process realizations are continuous

Decrease : K1(x) decreases with ||x || and lim||x||→+∞ K1(x) = 0

François Bachoc Cross Validation MathAmSud - 2020 4 / 25



Example of the Matérn 3
2 covariance function on R

The Matérn 3
2 covariance function, for a Gaussian

process on R is parameterized by

A variance parameter σ2 > 0

A correlation length parameter ` > 0

It is defined as

Kσ2,`(x1, x2) = σ2
(

1 +
√

6
|x1 − x2|
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Interpretation
Stationarity, continuity, decrease

σ2 corresponds to the order of magnitude of the functions that are realizations of the
Gaussian process

` corresponds to the speed of variation of the functions that are realizations of the Gaussian
process

⇒ Natural generalization on Rd
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Covariance function estimation

Parameterization
Covariance function model

{
σ2Kθ, σ2 ≥ 0, θ ∈ Θ

}
for the Gaussian process Y .

σ2 is the variance parameter

θ is the multidimensional correlation parameter. Kθ is a stationary correlation function

Observations
Y is observed at x1, ..., xn ∈ X , yielding the Gaussian vector y = (Y (x1), ...,Y (xn))

Estimation

Objective : build estimators σ̂2(y) and θ̂(y)
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Maximum Likelihood (ML) for estimation

Explicit Gaussian likelihood function for the observation vector y

Maximum Likelihood
Define Rθ as the correlation matrix of y = (Y (x1), ...,Y (xn))t with correlation function Kθ and
σ2 = 1
The Maximum Likelihood estimator of (σ2, θ) is

(σ̂2
ML, θ̂ML) ∈ argmin

σ2≥0,θ∈Θ

1
n

(
ln (|σ2Rθ|) +

1
σ2

y t R−1
θ y

)

⇒ Numerical optimization with O(n3) criterion
⇒ Most standard estimation method
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Cross Validation (CV) for estimation

ŷθ,i,−i = Eθ(Y (xi )|y1, ..., yi−1, yi+1, ..., yn)

σ2c2
θ,i,−i = varσ2,θ(Y (xi )|y1, ..., yi−1, yi+1, ..., yn)

Leave-One-Out criteria

θ̂CV ∈ argmin
θ∈Θ

n∑
i=1

(yi − ŷθ,i,−i )
2

and
1
n

n∑
i=1

(yi − ŷθ̂CV ,i,−i )
2

σ̂2
CV c2

θ̂CV ,i,−i

= 1⇔ σ̂2
CV =

1
n

n∑
i=1

(yi − ŷθ̂CV ,i,−i )
2

c2
θ̂CV ,i,−i

=⇒ Alternative method used by some authors. E.g. Sundararajan and Keerthi 2001, Zhang and
Wang, 2010, Bachoc 2013
=⇒ Cost is O(n3) as well (Dubrule, 1983)
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Well-specified case

Estimation of ψ

We let ψ = (σ2, θ). Hence we consider the set
{

Kψ , ψ ∈ Ψ
}

of covariance functions for the
estimation

Well-specified model
The true covariance function K1 of the Gaussian process belongs to the set

{
Kψ , ψ ∈ Ψ

}
. Hence

K1 = Kψ0 , ψ0 ∈ Ψ

=⇒ Most standard theoretical framework for estimation
=⇒ ML and CV estimators can be analyzed and compared w.r.t. estimation error criteria ( based
on ||ψ̂ − ψ0||)
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Two asymptotic frameworks for covariance parameter estimation

Asymptotics (number of observations n→ +∞) is an active area of research

There are several asymptotic frameworks because they are several possible location patterns
for the observation points

Two main asymptotic frameworks
fixed-domain asymptotics : The observation points are dense in a bounded domain
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increasing-domain asymptotics : number of observation points is proportional to domain
volume −→ unbounded observation domain.
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Existing fixed-domain asymptotic results

From 80’-90’ and onward. Fruitful theory for interaction estimation-prediction.

Stein M, Interpolation of Spatial Data : Some Theory for Kriging, Springer, New York,
1999.

Consistent estimation is impossible for some covariance parameters (identifiable in
finite-sample), see e.g.

Zhang, H., Inconsistent Estimation and Asymptotically Equivalent Interpolations in
Model-Based Geostatistics, Journal of the American Statistical Association (99),
250-261, 2004.

Proofs (consistency, asymptotic distribution) are challenging in several ways
They are done on a case-by-case basis for the covariance models
They may assume gridded observation points
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Existing increasing-domain asymptotic results

Consistent estimation is possible for all covariance parameters (that are identifiable in
finite-sample). [More independence between observations]

Asymptotic normality proved for Maximum-Likelihood and Cross-Validation

Mardia K, Marshall R, Maximum likelihood estimation of models for residual covariance
in spatial regression, Biometrika 71 (1984) 135-146.

N. Cressie and S.N Lahiri, The asymptotic distribution of REML estimators, Journal of
Multivariate Analysis 45 (1993) 217-233.

N. Cressie and S.N Lahiri, Asymptotics for REML estimation of spatial covariance
parameters, Journal of Statistical Planning and Inference 50 (1996) 327-341.

F. Bachoc, Asymptotic analysis of the role of spatial sampling for covariance parameter
estimation of Gaussian processes, Journal of Multivariate Analysis 125 (2014) 1-35.
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Our fixed-domain asymptotic setting : exponential covariance function

Observation setting :

Fixed one-dimensional domain X = [0, 1]

We consider a triangular array of observation points {x (n)
i ; 1 ≤ i ≤ n, n ∈ N}

We let (x1, ..., xn) = (x (n)
1 , ..., x (n)

n )

We assume 0 = x1 < x2 < ... < xn = 1

Covariance function :

Kψ(t) = Kσ2,θ(t) = σ2e−θ|t|

(σ2, θ) ∈ [a,A]× [b,B], with 0 < a < A <∞, 0 < b < B <∞
Ornstein-Uhlenbeck process
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Comments

More amenable to theoretical analysis
Correlation matrix Rθ = [e−θ|xi−xj |]1≤j,j≤n has an explicit inverse
Markovian process

Studied by : Ying 1991, 1993, chen et al 2000, Antognini 2010, Chang et al 2017, Velandia et
al 2017

Covariance function not differentiable at 0 =⇒ realizations are not differentiable
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Asymptotic results for maximum likelihood

The parameters σ2 and θ can not be estimated consistently

The product σ2θ can

Ying, 1991 showed

σ̂2
MLθ̂ML →a.s.

n→∞ σ2
0θ0 and

√
n

√
2σ2

0θ0
(σ̂2

MLθ̂ML − σ2
0θ0)→Dn→∞ N (0, 1)

Asymptotic variance is (
√

2σ2
0θ0)2 independently of the triangular array of observation points
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Our result for cross validation

Joint work with Agnès Lagnoux and Jade Nguyen (University of Toulouse)

F. Bachoc, A. Lagnoux and T.M.N. Nguyen Cross-validation estimation of covariance
parameters under fixed-domain asymptotics, Journal of Multivariate Analysis 160 (2017)
42-67.

We study the cross validation estimator

(σ̂2
CV , θ̂CV ) ∈ argmin

a≤σ2≤A,b≤θ≤B

n∑
i=1

[
log(σ2c2

θ,i,−i ) +
(yi − ŷθ,i,−i )

2

σ2c2
θ,i,−i

]

We show

σ̂2
CV θ̂CV →a.s.

n→∞ σ2
0θ0 and

√
n

τnσ2
0θ0

(σ̂2
CV θ̂CV − σ2

0θ0)→Dn→∞ N (0, 1)

(τnσ2
0θ0)2 is the asymptotic variance
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Analysis of the asymptotic variance

Let ∆i = xi+1 − xi for i = 2, ..., n

We have

τ2
n =

2
n

n−1∑
i=3

[(
∆i+1

∆i + ∆i+1
+

∆i−1

∆i + ∆i−1

)2
+ 2

∆i ∆i+1

(∆i + ∆i+1)2

]

We show, for any triangular array {x1, ..., xn} satisfying maxi=2,...,n ∆i →n→∞ 0

2 ≤ lim inf
n→∞

τ2
n ≤ lim sup

n→∞
τ2

n ≤ 4

Asymptotic variance larger than for Maximum Likelihood

We provide examples of triangular arrays reaching the lower and upper bound

We extend the results to unknown non-zero mean functions
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Misspecified case

The covariance function K1 of Y does not belong to{
Kψ , ψ ∈ Ψ

}
=⇒ There is no true covariance parameter but there may be optimal covariance parameters for
difference criteria :

prediction mean square error

confidence interval reliability

multidimensional Kullback-Leibler distance

...

=⇒ Cross Validation can be more appropriate than Maximum Likelihood for some of these criteria
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Impact of the spatial sampling

For irregularly spaced observations points, prediction for new points can be similar to
Leave-One-Out prediction =⇒ the Cross Validation criterion can be unbiased

For regularly spaced observations points, prediction for new points is different from
Leave-One-Out prediction =⇒ the Cross Validation criterion is biased

=⇒ we aim at supporting this interpretation in an asymptotic framework
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Expansion-domain asymptotics with purely random sampling

Context :

The observation points X1, ...,Xn are iid and uniformly distributed on [0, n1/d ]d

We use a parametric noisy Gaussian process model with stationary covariance function
model {

Kψ , ψ ∈ Ψ
}

with stationary Kψ of the form

Kψ(t1 − t2) = Kc,ψ(t1 − t2)︸ ︷︷ ︸
continuous part

+ δψ1t1=t2︸ ︷︷ ︸
noise part

where Kc,ψ(t) is continuous in t and δψ > 0
=⇒ δψ corresponds to a measure error for the observations or a small-scale variability of the
Gaussian process

The model satisfies regularity and summability conditions

The true covariance function K1 is also stationary and summable
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Cross Validation asymptotically minimizes the integrated prediction
error (1/2)

Let Ŷψ(t) be the prediction of the Gaussian process Y at t , under correlation function Kψ , from
observations Y (x1), ...,Y (xn)

Integrated prediction error :

En,ψ :=
1
n

∫
[0,n1/d ]d

(
Ŷψ(t)− Y (t)

)2
dt

Intuition :
The variable t above plays the same role as a new observation point Xn+1, uniform on [0, n1/d ]d

and independent of X1, ...,Xn

So we have
E
(
En,ψ

)
= E

([
Y (Xn+1)− Eψ|X (Y (Xn+1)|Y (X1), ...,Y (Xn))

]2)
and so when n is large

E
(
En,ψ

)
≈ E

(
1
n

n∑
i=1

(yi − ŷψ,i,−i )
2

)
=⇒ This is an indication that the Cross Validation estimator can be optimal for integrated
prediction error
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Cross Validation asymptotically minimizes the integrated prediction
error (2/2)

We show in

F. Bachoc, “Asymptotic analysis of covariance parameter estimation for Gaussian processes
in the misspecified case”, Bernoulli, 2018.

Theorem
With

En,ψ =

∫
[0,n1/d ]d

(
Ŷψ(t)− Y (t)

)2
dt

we have
En,ψ̂CV

= inf
ψ∈Ψ

En,ψ + op(1).

Comments :

Same Gaussian process realization for both covariance parameter estimation and prediction
error

The optimal (unreachable) prediction error infψ∈Ψ En,ψ is lower-bounded =⇒ CV is indeed
asymptotically optimal
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Conclusion

The results shown support the following general picture

For well-specified models, ML would be optimal
CV can be preferable in the misspecified case for specific prediction-purposes (e.g. integrated
prediction error).

beware of regularly spaced observation points
CV can yield large variances

Thank you for your attention !

François Bachoc Cross Validation MathAmSud - 2020 25 / 25


	Gaussian processes and cross validation
	Fixed-domain asymptotics for the well-specified case
	Increasing-domain asymptotics for the misspecified case

