Asymptotic results for cross validation estimation of covariance parameters of Gaussian processes

François Bachoc Agnès Lagnoux, Thi Mong Ngoc Nguyen

Institut de Mathématiques de Toulouse

MathAmSud - 2020

Gaussian processes and cross validation

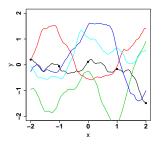
Fixed-domain asymptotics for the well-specified case

Increasing-domain asymptotics for the misspecified case

Gaussian process regression

Gaussian process regression (Kriging model)

Study of a **single realization** of a Gaussian process $x \to Y(x)$ on a domain $\mathcal{X} \subset \mathbb{R}^d$



Goal

Predicting the continuous realization function, from a finite number of observation points

Applications: Computer experiments, machine learning, geosciences,...

The Gaussian process

The Gaussian process

- We consider that the Gaussian process is centered, $\forall x, \mathbb{E}(Y(x)) = 0$
- The Gaussian process is hence characterized by its covariance function

The covariance function

• The function $K_1: \mathcal{X}^2 \to \mathbb{R}$, defined by $K_1(x_1, x_2) = cov(Y(x_1), Y(x_2))$

In most classical cases:

- Stationarity : $K_1(x_1, x_2) = K_1(x_1 x_2)$
- Continuity : $K_1(x)$ is continuous \Rightarrow Gaussian process realizations are continuous
- Decrease : $K_1(x)$ decreases with ||x|| and $\lim_{||x|| \to +\infty} K_1(x) = 0$

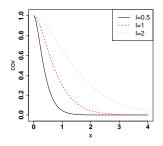
Example of the Matérn $\frac{3}{2}$ covariance function on $\mathbb R$

The Matérn $\frac{3}{2}$ covariance function, for a Gaussian process on \mathbb{R} is parameterized by

- A variance parameter $\sigma^2 > 0$
- A correlation length parameter $\ell > 0$

It is defined as

$$K_{\sigma^2,\ell}(x_1,x_2) = \sigma^2 \left(1 + \sqrt{6} \frac{|x_1 - x_2|}{\ell} \right) e^{-\sqrt{6} \frac{|x_1 - x_2|}{\ell}}$$



Interpretation

- Stationarity, continuity, decrease
- ullet σ^2 corresponds to the order of magnitude of the functions that are realizations of the Gaussian process
- \bullet ℓ corresponds to the speed of variation of the functions that are realizations of the Gaussian process

 \Rightarrow Natural generalization on \mathbb{R}^d

Covariance function estimation

Parameterization

Covariance function model $\{\sigma^2 K_{\theta}, \sigma^2 \geq 0, \theta \in \Theta\}$ for the Gaussian process Y.

- σ^2 is the variance parameter
- \bullet θ is the multidimensional correlation parameter. K_{θ} is a stationary correlation function

Observations

Y is observed at $x_1,...,x_n \in \mathcal{X}$, yielding the Gaussian vector $y = (Y(x_1),...,Y(x_n))$

Estimation

Objective : build estimators $\hat{\sigma}^2(y)$ and $\hat{\theta}(y)$

6 / 25

Maximum Likelihood (ML) for estimation

Explicit Gaussian likelihood function for the observation vector *y*

Maximum Likelihood

Define \mathbf{R}_{θ} as the correlation matrix of $y = (Y(x_1), ..., Y(x_n))^t$ with correlation function K_{θ} and $\sigma^2 = 1$

The Maximum Likelihood estimator of (σ^2, θ) is

$$(\hat{\sigma}_{\mathit{ML}}^{2}, \hat{\theta}_{\mathit{ML}}) \in \operatorname*{argmin}_{\sigma^{2} > 0, \theta \in \Theta} \frac{1}{n} \left(\ln \left(|\sigma^{2} \mathbf{R}_{\theta}| \right) + \frac{1}{\sigma^{2}} y^{t} \mathbf{R}_{\theta}^{-1} y \right)$$

- \Rightarrow Numerical optimization with $O(n^3)$ criterion
- ⇒ Most standard estimation method

Cross Validation (CV) for estimation

•
$$\hat{y}_{\theta,i,-i} = \mathbb{E}_{\theta}(Y(x_i)|y_1,...,y_{i-1},y_{i+1},...,y_n)$$

•
$$\sigma^2 c_{\theta,i,-i}^2 = var_{\sigma^2,\theta}(Y(x_i)|y_1,...,y_{i-1},y_{i+1},...,y_n)$$

Leave-One-Out criteria

$$\hat{\theta}_{CV} \in \underset{\theta \in \Theta}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \hat{y}_{\theta,i,-i})^2$$

and

$$\frac{1}{n} \sum_{i=1}^{n} \frac{(y_{i} - \hat{y}_{\hat{\theta}_{CV},i,-i})^{2}}{\hat{\sigma}_{CV}^{2} c_{\hat{\theta}_{CV},i,-i}^{2}} = 1 \Leftrightarrow \hat{\sigma}_{CV}^{2} = \frac{1}{n} \sum_{i=1}^{n} \frac{(y_{i} - \hat{y}_{\hat{\theta}_{CV},i,-i})^{2}}{c_{\hat{\theta}_{CV},i,-i}^{2}}$$

→ Alternative method used by some authors. E.g. Sundararajan and Keerthi 2001, Zhang and Wang, 2010, Bachoc 2013

 \implies Cost is $O(n^3)$ as well (Dubrule, 1983)

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 釣९@

8 / 25

Gaussian processes and cross validation

Fixed-domain asymptotics for the well-specified case

Increasing-domain asymptotics for the misspecified case

Well-specified case

Estimation of ψ

We let $\psi = (\sigma^2, \theta)$. Hence we consider the set $\{K_{\psi}, \psi \in \Psi\}$ of covariance functions for the estimation

Well-specified model

The true covariance function K_1 of the Gaussian process belongs to the set $\{K_{\psi}, \psi \in \Psi\}$. Hence

$$K_1 = K_{\psi_0}, \psi_0 \in \Psi$$

- ⇒ Most standard theoretical framework for estimation
- \Longrightarrow ML and CV estimators can be analyzed and compared w.r.t. estimation error criteria (based on $||\hat{\psi} \psi_0||$)

François Bachoc Cross Validation MathAmSud - 2020 10 / 25

Two asymptotic frameworks for covariance parameter estimation

- Asymptotics (number of observations $n \to +\infty$) is an active area of research
- There are several asymptotic frameworks because they are several possible location patterns for the observation points

Two main asymptotic frameworks

• fixed-domain asymptotics : The observation points are dense in a bounded domain

 increasing-domain asymptotics: number of observation points is proportional to domain volume — unbounded observation domain.

Existing fixed-domain asymptotic results

- From 80'-90' and onward. Fruitful theory for interaction estimation-prediction.

Stein M, Interpolation of Spatial Data : Some Theory for Kriging, *Springer, New York*, 1999.

- Consistent estimation is impossible for some covariance parameters (identifiable in finite-sample), see e.g.

Zhang, H., Inconsistent Estimation and Asymptotically Equivalent Interpolations in Model-Based Geostatistics, *Journal of the American Statistical Association (99)*, 250-261, 2004.

- Proofs (consistency, asymptotic distribution) are challenging in several ways
 - They are done on a case-by-case basis for the covariance models
 - They may assume gridded observation points

12 / 25

Existing increasing-domain asymptotic results

- Consistent estimation is possible for all covariance parameters (that are identifiable in finite-sample). [More independence between observations]
- Asymptotic normality proved for Maximum-Likelihood and Cross-Validation

- N. Cressie and S.N Lahiri, The asymptotic distribution of REML estimators, *Journal of Multivariate Analysis 45 (1993) 217-233*.
 - N. Cressie and S.N Lahiri, Asymptotics for REML estimation of spatial covariance parameters, *Journal of Statistical Planning and Inference 50 (1996) 327-341*.
- F. Bachoc, Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes, *Journal of Multivariate Analysis 125 (2014) 1-35*.

Our fixed-domain asymptotic setting: exponential covariance function

Observation setting:

- Fixed one-dimensional domain $\mathcal{X} = [0, 1]$
- We consider a triangular array of observation points $\{x_i^{(n)}; 1 \le i \le n, n \in \mathbb{N}\}$
- We let $(x_1,...,x_n) = (x_1^{(n)},...,x_n^{(n)})$
- We assume $0 = x_1 < x_2 < ... < x_n = 1$

Covariance function:

- $K_{\psi}(t) = K_{\sigma^2,\theta}(t) = \sigma^2 e^{-\theta|t|}$
- $(\sigma^2, \theta) \in [a, A] \times [b, B]$, with $0 < a < A < \infty$, $0 < b < B < \infty$
- Ornstein-Uhlenbeck process

François Bachoc Cross Validation MathAmSud - 2020 14 / 25

Comments

- More amenable to theoretical analysis
 - ullet Correlation matrix ${f R}_{ heta} = [e^{- heta \, |\, x_i x_j|}]_{1 < j,j \le n}$ has an explicit inverse
 - Markovian process
- Studied by: Ying 1991, 1993, chen et al 2000, Antognini 2010, Chang et al 2017, Velandia et al 2017
- Covariance function not differentiable at 0 ⇒ realizations are not differentiable

15 / 25

Asymptotic results for maximum likelihood

- The parameters σ^2 and θ can not be estimated consistently
- The product $\sigma^2\theta$ can
- Ying, 1991 showed

$$\hat{\sigma}_{\textit{ML}}^2 \hat{\theta}_{\textit{ML}} \rightarrow_{n \to \infty}^{\textit{a.s.}} \sigma_0^2 \theta_0 \quad \text{ and } \quad \frac{\sqrt{n}}{\sqrt{2}\sigma_0^2 \theta_0} (\hat{\sigma}_{\textit{ML}}^2 \hat{\theta}_{\textit{ML}} - \sigma_0^2 \theta_0) \rightarrow_{n \to \infty}^{\mathcal{D}} \mathcal{N}(0,1)$$

• Asymptotic variance is $(\sqrt{2}\sigma_0^2\theta_0)^2$ independently of the triangular array of observation points

16 / 25

Our result for cross validation

- Joint work with Agnès Lagnoux and Jade Nguyen (University of Toulouse)
 - F. Bachoc, A. Lagnoux and T.M.N. Nguyen Cross-validation estimation of covariance parameters under fixed-domain asymptotics, *Journal of Multivariate Analysis 160 (2017)* 42-67
- We study the cross validation estimator

$$(\hat{\sigma}_{CV}^2, \hat{\theta}_{CV}) \in \underset{a \leq \sigma^2 \leq A, b \leq \theta \leq B}{\operatorname{argmin}} \sum_{i=1}^n \left[\log(\sigma^2 c_{\theta,i,-i}^2) + \frac{(y_i - \hat{y}_{\theta,i,-i})^2}{\sigma^2 c_{\theta,i,-i}^2} \right]$$

We show

$$\hat{\sigma}_{CV}^2 \hat{\theta}_{CV} \rightarrow_{n \to \infty}^{a.s.} \sigma_0^2 \theta_0 \quad \text{and} \quad \frac{\sqrt{n}}{\tau_n \sigma_0^2 \theta_0} (\hat{\sigma}_{CV}^2 \hat{\theta}_{CV} - \sigma_0^2 \theta_0) \rightarrow_{n \to \infty}^{\mathcal{D}} \mathcal{N}(0, 1)$$

• $(\tau_n \sigma_0^2 \theta_0)^2$ is the asymptotic variance

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 釣९@

17/25

Analysis of the asymptotic variance

- Let $\Delta_i = x_{i+1} x_i$ for i = 2, ..., n
- We have

$$\tau_n^2 = \frac{2}{n}\sum_{i=3}^{n-1} \left[\left(\frac{\Delta_{i+1}}{\Delta_i + \Delta_{i+1}} + \frac{\Delta_{i-1}}{\Delta_i + \Delta_{i-1}} \right)^2 + 2\frac{\Delta_i \Delta_{i+1}}{(\Delta_i + \Delta_{i+1})^2} \right]$$

• We show, for any triangular array $\{x_1,...,x_n\}$ satisfying $\max_{i=2,...,n} \Delta_i \to_{n\to\infty} 0$

$$2 \leq \liminf_{n \to \infty} \tau_n^2 \leq \limsup_{n \to \infty} \tau_n^2 \leq 4$$

- Asymptotic variance larger than for Maximum Likelihood
- We provide examples of triangular arrays reaching the lower and upper bound
- We extend the results to unknown non-zero mean functions

François Bachoc Cross Validation MathAmSud - 2020 18 / 25

Gaussian processes and cross validation

Fixed-domain asymptotics for the well-specified case

Increasing-domain asymptotics for the misspecified case

François Bachoc Cross Validation MathAmSud - 2020 19 / 2

Misspecified case

The covariance function K_1 of Y does not belong to

$$\left\{ \mathcal{K}_{\psi},\psi\in\Psi\right\}$$

⇒ There is no true covariance parameter but there may be optimal covariance parameters for difference criteria :

- prediction mean square error
- confidence interval reliability
- multidimensional Kullback-Leibler distance
- ...

⇒ Cross Validation can be more appropriate than Maximum Likelihood for some of these criteria

20 / 25

Impact of the spatial sampling

 For irregularly spaced observations points, prediction for new points can be similar to Leave-One-Out prediction

the Cross Validation criterion can be unbiased

 \Longrightarrow we aim at supporting this interpretation in an asymptotic framework

Expansion-domain asymptotics with purely random sampling

Context:

- The observation points $X_1, ..., X_n$ are *iid* and uniformly distributed on $[0, n^{1/d}]^d$
- We use a parametric noisy Gaussian process model with stationary covariance function model

$$\left\{ \mathcal{K}_{\psi},\psi\in\Psi\right\}$$

with stationary K_{ψ} of the form

$$K_{\psi}(t_1 - t_2) = \underbrace{K_{c,\psi}(t_1 - t_2)}_{\text{continuous part}} + \underbrace{\delta_{\psi} \mathbf{1}_{t_1 = t_2}}_{\text{noise part}}$$

where $K_{c,\psi}(t)$ is continuous in t and $\delta_\psi>0$ $\Longrightarrow \delta_\psi$ corresponds to a measure error for the observations or a small-scale variability of the Gaussian process

- The model satisfies regularity and summability conditions
- ullet The true covariance function K_1 is also stationary and summable

22 / 25

Cross Validation asymptotically minimizes the integrated prediction error (1/2)

Let $\hat{Y}_{\psi}(t)$ be the prediction of the Gaussian process Y at t, under correlation function K_{ψ} , from observations $Y(x_1), ..., Y(x_n)$

Integrated prediction error:

$$E_{n,\psi}:=\frac{1}{n}\int_{[0,n^{1/d}]^d}\left(\hat{Y}_{\psi}(t)-Y(t)\right)^2dt$$

Intuition:

The variable t above plays the same role as a new observation point X_{n+1} , uniform on $[0, n^{1/d}]^d$ and independent of $X_1, ..., X_n$

So we have

$$\mathbb{E}\left(E_{n,\psi}\right) = \mathbb{E}\left(\left[Y(X_{n+1}) - \mathbb{E}_{\psi|X}(Y(X_{n+1})|Y(X_1),...,Y(X_n))\right]^2\right)$$

and so when n is large

$$\mathbb{E}\left(\mathsf{E}_{n,\psi}\right) \approx \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_{\psi,i,-i})^2\right)$$

⇒ This is an indication that the Cross Validation estimator can be optimal for integrated prediction error

François Bachoc Cross Validation MathAmSud - 2020 23 / 25

Cross Validation asymptotically minimizes the integrated prediction error (2/2)

We show in

F. Bachoc, "Asymptotic analysis of covariance parameter estimation for Gaussian processes in the misspecified case", *Bernoulli*, 2018.

Theorem

With

$$E_{n,\psi} = \int_{[0,n^{1/d}]^d} (\hat{Y}_{\psi}(t) - Y(t))^2 dt$$

we have

$$E_{n,\hat{\psi}_{CV}} = \inf_{\psi \in \Psi} E_{n,\psi} + o_p(1).$$

Comments:

- Same Gaussian process realization for both covariance parameter estimation and prediction error
- The optimal (unreachable) prediction error $\inf_{\psi \in \Psi} E_{n,\psi}$ is lower-bounded \Longrightarrow CV is indeed asymptotically optimal

24 / 25

Conclusion

The results shown support the following general picture

- For well-specified models, ML would be optimal
- CV can be preferable in the misspecified case for specific prediction-purposes (e.g. integrated prediction error).
 - · beware of regularly spaced observation points
 - CV can yield large variances

Thank you for your attention!