Asymptotic results for cross validation estimation of covariance parameters of Gaussian processes

> François Bachoc Agnès Lagnoux, Thi Mong Ngoc Nguyen

Institut de Mathématiques de Toulouse

MathAmSud - 2020

4 D F

[Gaussian processes and cross validation](#page-2-0)

² [Fixed-domain asymptotics for the well-specified case](#page-8-0)

³ [Increasing-domain asymptotics for the misspecified case](#page-18-0)

4 0 8

Gaussian process regression (Kriging model)

Study of a **single realization** of a Gaussian process $x \to Y(x)$ on a domain $\mathcal{X} \subset \mathbb{R}^d$

Goal

Predicting the continuous realization function, from a finite number of **observation points**

Applications : Computer experiments, machine learning, geos[cien](#page-1-0)[ce](#page-3-0)[s,](#page-1-0)[. . .](#page-2-0)

∢ □ ▶ ∢ [□]

つへへ

The Gaussian process

- We consider that the Gaussian process is centered, ∀*x*, E(*Y*(*x*)) = 0
- The Gaussian process is hence characterized by its covariance function

The covariance function

• The function $K_1 : \mathcal{X}^2 \to \mathbb{R}$, defined by $K_1(x_1, x_2) = cov(Y(x_1), Y(x_2))$

In most classical cases :

- \bullet Stationarity : *K*₁(*x*₁, *x*₂) = *K*₁(*x*₁ − *x*₂)
- \bullet Continuity : $K_1(x)$ is continuous \Rightarrow Gaussian process realizations are continuous
- \bullet Decrease : $K_1(x)$ decreases with $||x||$ and $\lim_{||x|| \to +\infty} K_1(x) = 0$

 Ω

(□) (f)

Example of the Matérn $\frac{3}{2}$ covariance function on $\mathbb R$

- The Matérn $\frac{3}{2}$ covariance function, for a Gaussian process on $\mathbb R$ is parameterized by
	- A variance parameter $\sigma^2>0$
	- A correlation length parameter $\ell > 0$

It is defined as

$$
K_{\sigma^2,\ell}(x_1,x_2)=\sigma^2\left(1+\sqrt{6}\frac{|x_1-x_2|}{\ell}\right)e^{-\sqrt{6}\frac{|x_1-x_2|}{\ell}}
$$

Interpretation

- Stationarity, continuity, decrease
- σ^2 corresponds to the order of magnitude of the functions that are realizations of the Gaussian process
- \bullet ℓ corresponds to the speed of variation of the functions that are realizations of the Gaussian process
- \Rightarrow Natural generalization on \mathbb{R}^d

つへへ

Parameterization

Covariance function model $\left\{ \sigma^2 {\mathcal K}_{\theta}, \sigma^2 \geq 0, \theta \in \Theta \right\}$ for the Gaussian process Y.

- σ^2 is the variance parameter
- θ is the multidimensional correlation parameter. K_{θ} is a stationary correlation function

Observations

Y is observed at $x_1, ..., x_n \in \mathcal{X}$, yielding the Gaussian vector $y = (Y(x_1), ..., Y(x_n))$

Estimation

Objective : build estimators $\hat{\sigma}^2(y)$ and $\hat{\theta}(y)$

4 0 8 4

Explicit Gaussian likelihood function for the observation vector *y*

Maximum Likelihood

Define **R**_θ as the correlation matrix of $y = (Y(x_1),..., Y(x_n))^t$ with correlation function K_θ and $\sigma^2=1$

The Maximum Likelihood estimator of (σ^2,θ) is

$$
(\hat{\sigma}_{ML}^2, \hat{\theta}_{ML}) \in \operatornamewithlimits{argmin}_{\sigma^2 \geq 0, \theta \in \Theta} \frac{1}{n} \left(\ln \left(|\sigma^2 \mathbf{R}_{\theta}| \right) + \frac{1}{\sigma^2} y^t \mathbf{R}_{\theta}^{-1} y \right)
$$

- ⇒ Numerical optimization with *O*(*n* 3) criterion
- ⇒ Most standard estimation method

4 0 8

\n- \n
$$
\hat{y}_{\theta,i,-i} = \mathbb{E}_{\theta}(Y(x_i)|y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_n)
$$
\n
\n- \n $\sigma^2 c_{\theta,i,-i}^2 = \text{var}_{\sigma^2,\theta}(Y(x_i)|y_1, \ldots, y_{i-1}, y_{i+1}, \ldots, y_n)$ \n
\n

Leave-One-Out criteria

$$
\hat{\theta}_{CV} \in \operatorname*{argmin}_{\theta \in \Theta} \sum_{i=1}^{n} (y_i - \hat{y}_{\theta, i, -i})^2
$$

and

$$
\frac{1}{n}\sum_{i=1}^n \frac{(y_i - \hat{y}_{\hat{\theta}_{CV},i,-i})^2}{\hat{\sigma}_{CV}^2 c_{\hat{\theta}_{CV},i,-i}^2} = 1 \Leftrightarrow \hat{\sigma}_{CV}^2 = \frac{1}{n}\sum_{i=1}^n \frac{(y_i - \hat{y}_{\hat{\theta}_{CV},i,-i})^2}{c_{\hat{\theta}_{CV},i,-i}^2}
$$

 \Rightarrow Alternative method used by some authors. E.g. Sundararajan and Keerthi 2001, Zhang and Wang, 2010, Bachoc 2013 \Longrightarrow Cost is $O(n^3)$ as well (Dubrule, 1983)

4 0 8 4

² [Fixed-domain asymptotics for the well-specified case](#page-8-0)

[Increasing-domain asymptotics for the misspecified case](#page-18-0)

4 ロ ▶ 4 伊

Estimation of ψ

We let $\psi=(\sigma^2,\theta).$ Hence we consider the set $\big\{\mathcal{K}_\psi,\psi\in\Psi\big\}$ of covariance functions for the estimation

Well-specified model

The true covariance function K_1 of the Gaussian process belongs to the set $\{\mathsf{K}_\psi,\psi\in\mathsf{\Psi}\}.$ Hence

$$
K_1=K_{\psi_0}, \psi_0\in \Psi
$$

 \implies Most standard theoretical framework for estimation \implies ML and CV estimators can be analyzed and compared w.r.t. estimation error criteria (based on $||\hat{\psi} - \psi_0||$

イロト イ母 トイヨ トイヨ

Two asymptotic frameworks for covariance parameter estimation

- Asymptotics (number of observations *n* → +∞) is an active area of research
- There are several asymptotic frameworks because they are several possible location patterns for the observation points

Two main asymptotic frameworks

• fixed-domain asymptotics : The observation points are dense in a bounded domain

 \bullet increasing-domain asymptotics : number of observation points is proportional to domain volume $→$ unbounded observation domain.

4 D F

- From 80'-90' and onward. Fruitful theory for interaction estimation-prediction.
	- Stein M, Interpolation of Spatial Data : Some Theory for Kriging, *Springer, New York, 1999*.
- Consistent estimation is impossible for some covariance parameters (identifiable in finite-sample), see e.g.
	- Zhang, H., Inconsistent Estimation and Asymptotically Equivalent Interpolations in Model-Based Geostatistics, *Journal of the American Statistical Association (99), 250-261, 2004*.
- Proofs (consistency, asymptotic distribution) are challenging in several ways
	- They are done on a case-by-case basis for the covariance models
	- They may assume gridded observation points

4 0 8 4

Existing increasing-domain asymptotic results

- Consistent estimation is possible for all covariance parameters (that are identifiable in finite-sample). [More independence between observations]
- Asymptotic normality proved for Maximum-Likelihood and Cross-Validation

Mardia K, Marshall R, Maximum likelihood estimation of models for residual covariance in spatial regression, *Biometrika 71 (1984) 135-146*.

- N. Cressie and S.N Lahiri, The asymptotic distribution of REML estimators, *Journal of Multivariate Analysis 45 (1993) 217-233*.
- N. Cressie and S.N Lahiri, Asymptotics for REML estimation of spatial covariance parameters, *Journal of Statistical Planning and Inference 50 (1996) 327-341*.
- 畐
- F. Bachoc, Asymptotic analysis of the role of spatial sampling for covariance parameter estimation of Gaussian processes, *Journal of Multivariate Analysis 125 (2014) 1-35*.

4 0 8 4

Observation setting :

- Fixed one-dimensional domain $\mathcal{X} = [0, 1]$
- We consider a triangular array of observation points $\{x_i^{(n)}; 1 \le i \le n, n \in \mathbb{N}\}$
- We let $(x_1, ..., x_n) = (x_1^{(n)}, ..., x_n^{(n)})$
- We assume $0 = x_1 < x_2 < ... < x_n = 1$

Covariance function :

- $K_{\psi}(t) = K_{\sigma^2,\theta}(t) = \sigma^2 e^{-\theta|t|}$
- $(\sigma^2, \theta) \in [a,A] \times [b,B]$, with $0 < a < A < \infty,$ $0 < b < B < \infty$
- **o** Ornstein-Uhlenbeck process

- More amenable to theoretical analysis
	- Correlation matrix $\mathbf{R}_{\theta} = [e^{-\theta |x_j x_j|}]_{1 \leq j,j \leq n}$ has an explicit inverse
	- **Markovian process**
- Studied by : Ying 1991, 1993, chen et al 2000, Antognini 2010, Chang et al 2017, Velandia et al 2017
- \bullet Covariance function not differentiable at 0 \Longrightarrow realizations are not differentiable

イロト イ母ト イヨト イヨト

- The parameters σ^2 and θ can not be estimated consistently
- The product $\sigma^2\theta$ can
- Ying, 1991 showed

$$
\hat{\sigma}_{ML}^2 \hat{\theta}_{ML} \rightarrow^{\text{a.s.}}_{n \rightarrow \infty} \sigma_0^2 \theta_0 \quad \text{and} \quad \frac{\sqrt{n}}{\sqrt{2} \sigma_0^2 \theta_0} (\hat{\sigma}_{ML}^2 \hat{\theta}_{ML} - \sigma_0^2 \theta_0) \rightarrow^{\mathcal{D}}_{n \rightarrow \infty} \mathcal{N}(0, 1)
$$

Asymptotic variance is $(\sqrt{2}\sigma_0^2\theta_0)^2$ independently of the triangular array of observation points

4 D F

- Joint work with Agnès Lagnoux and Jade Nguyen (University of Toulouse)
	- 歸 F. Bachoc, A. Lagnoux and T.M.N. Nguyen Cross-validation estimation of covariance parameters under fixed-domain asymptotics, *Journal of Multivariate Analysis 160 (2017) 42-67*.
- We study the cross validation estimator

$$
(\hat{\sigma}_{CV}^2, \hat{\theta}_{CV}) \in \underset{a \leq \sigma^2 \leq A, b \leq \theta \leq B}{\text{argmin}} \sum_{i=1}^n \left[\log(\sigma^2 c_{\theta, i, -i}^2) + \frac{(y_i - \hat{y}_{\theta, i, -i})^2}{\sigma^2 c_{\theta, i, -i}^2} \right]
$$

• We show

$$
\hat{\sigma}_{CV}^{2}\hat{\theta}_{CV} \rightarrow_{n \to \infty}^{a.s.} \sigma_{0}^{2}\theta_{0} \quad \text{and} \quad \frac{\sqrt{n}}{\tau_{n}\sigma_{0}^{2}\theta_{0}} (\hat{\sigma}_{CV}^{2}\hat{\theta}_{CV} - \sigma_{0}^{2}\theta_{0}) \rightarrow_{n \to \infty}^{D} \mathcal{N}(0,1)
$$

 $(\tau_n \sigma_0^2 \theta_0)^2$ is the asymptotic variance

4 0 8

 290

• Let
$$
\Delta_i = x_{i+1} - x_i
$$
 for $i = 2, ..., n$

We have

$$
\tau_n^2 = \frac{2}{n} \sum_{i=3}^{n-1} \left[\left(\frac{\Delta_{i+1}}{\Delta_i + \Delta_{i+1}} + \frac{\Delta_{i-1}}{\Delta_i + \Delta_{i-1}} \right)^2 + 2 \frac{\Delta_i \Delta_{i+1}}{(\Delta_i + \Delta_{i+1})^2} \right]
$$

We show, for any triangular array {*x*1, ..., *xn*} satisfying max*i*=2,...,*ⁿ* ∆*ⁱ* →*n*→∞ 0

$$
2 \leq \liminf_{n \to \infty} \tau_n^2 \leq \limsup_{n \to \infty} \tau_n^2 \leq 4
$$

- Asymptotic variance larger than for Maximum Likelihood
- We provide examples of triangular arrays reaching the lower and upper bound
- We extend the results to unknown non-zero mean functions

4 0 8 4

[Gaussian processes and cross validation](#page-2-0)

[Fixed-domain asymptotics for the well-specified case](#page-8-0)

³ [Increasing-domain asymptotics for the misspecified case](#page-18-0)

← ロ ▶ → 伊

The covariance function K_1 of Y does not belong to

$$
\left\{K_{\psi}, \psi \in \Psi\right\}
$$

 \implies There is no true covariance parameter but there may be optimal covariance parameters for difference criteria :

- prediction mean square error
- confidence interval reliability
- **e** multidimensional Kullback-Leibler distance
- ...

 \implies Cross Validation can be more appropriate than Maximum Likelihood for some of these criteria

イロト イ母ト イヨト イヨ

Impact of the spatial sampling

• For irregularly spaced observations points, prediction for new points can be similar to Leave-One-Out prediction \Longrightarrow the Cross Validation criterion can be unbiased

• For regularly spaced observations points, prediction for new points is different from Leave-One-Out prediction \Longrightarrow the Cross Validation criterion is biased

 \implies we aim at supporting this interpretation in an asymptotic framework

4 D F

Context :

- The observation points $X_1,...,X_n$ are *iid* and uniformly distributed on $[0,n^{1/d}]^d$
- We use a parametric noisy Gaussian process model with stationary covariance function model

$$
\big\{ \mathsf{K}_\psi, \psi \in \Psi \big\}
$$

with stationary K_{ψ} of the form

$$
K_{\psi}(t_1 - t_2) = \underbrace{K_{c,\psi}(t_1 - t_2)}_{\text{continuous part}} + \underbrace{\delta_{\psi} \mathbf{1}_{t_1 = t_2}}_{\text{noise part}}
$$

where $K_{c, \psi}(t)$ is continuous in *t* and $\delta_{\psi} > 0$

 \Rightarrow δ_{ψ} corresponds to a measure error for the observations or a small-scale variability of the Gaussian process

- The model satisfies regularity and summability conditions
- \bullet The true covariance function K_1 is also stationary and summable

Cross Validation asymptotically minimizes the integrated prediction error (1/2)

Let $\hat{Y}_{\psi}(t)$ be the prediction of the Gaussian process *Y* at *t*, under correlation function K_{ψ} , from observations $Y(x_1), ..., Y(x_n)$

Integrated prediction error :

$$
E_{n,\psi}:=\frac{1}{n}\int_{[0,n^{1/d}]^d}\left(\hat{Y}_{\psi}(t)-Y(t)\right)^2dt
$$

Intuition :

The variable t above plays the same role as a new observation point X_{n+1} , uniform on $[0,n^{1/d}]^d$ and independent of $X_1, ..., X_n$

So we have

$$
\mathbb{E}\left(E_{n,\psi}\right)=\mathbb{E}\left(\left[Y(X_{n+1})-\mathbb{E}_{\psi|X}(Y(X_{n+1})|Y(X_1),...,Y(X_n))\right]^2\right)
$$

and so when *n* is large

$$
\mathbb{E}\left(E_{n,\psi}\right) \approx \mathbb{E}\left(\frac{1}{n}\sum_{i=1}^n(y_i-\hat{y}_{\psi,i,-i})^2\right)
$$

 \implies This is an indication that the Cross Validation estimator can be optimal for integrated prediction error

 QQ

イロメ イ母メ イヨメ イヨメ

Cross Validation asymptotically minimizes the integrated prediction error (2/2)

We show in

畐 F. Bachoc, "Asymptotic analysis of covariance parameter estimation for Gaussian processes in the misspecified case", *Bernoulli, 2018*.

Theorem

With

$$
E_{n,\psi} = \int_{[0,n^{1/d}]^d} \left(\hat{Y}_{\psi}(t) - Y(t)\right)^2 dt
$$

we have

$$
E_{n,\hat{\psi}_{CV}} = \inf_{\psi \in \Psi} E_{n,\psi} + o_p(1).
$$

Comments :

- Same Gaussian process realization for both covariance parameter estimation and prediction error
- The optimal (unreachable) prediction error inf_{ψ∈Ψ} $E_{n,ψ}$ is lower-bounded \Rightarrow CV is indeed asymptotically optimal

 QQ

K ロ ⊁ K 倒 ≯ K 君 ⊁ K 君 ≯

The results shown support the following general picture

- For well-specified models, ML would be optimal
- CV can be preferable in the misspecified case for specific prediction-purposes (e.g. integrated prediction error).
	- **•** beware of regularly spaced observation points
	- CV can yield large variances

Thank you for your attention !

◂**◻▸ ◂╓▸**

B K