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Concordance correlation coefficient (Lin, 1989)

Let (x11, x12), . . . , (xn1, xn2) be a bivariate random sample from a population with
mean vector µ and covariance matrix Σ.

A method to quantify the degree of agreement between the variables x1 and x2
corresponds to the CCC (Lin, 1989),1 which is defined as

ρc =
2σ12

σ11 + σ22 + (µ1 − µ2)2
,

where µj and σjj are the mean and variance of the measurements obtained by the jth
method or instrument of measurement (j = 1, 2), and σ12 is the covariance between
the measurements from methods 1 and 2.

It is easy to see that the CCC can be written as

ρc = ρ12C12, C12 = 2

[ √
σ11σ22

σ11 + σ22 + (µ1 − µ2)2

]
.

Moreover, a nice property of CCC is −1 ≤ ρc ≤ 1.

1Biometrics 45, 225-268
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Probability of agreement (Stevens et al., 2017)

Let Di = xi1 − xi2 for i = 1, . . . , n, be the differences between the measurements
obtained by the two instruments. Stevens et al. (2017)2 introduced the probability of
agreement defined as:

ψc = P(|Di| ≤ c), c > 0,

where CAD = (−c, c) represents a clinically acceptable difference. Assuming that the
observations (xi1, xi2), i = 1, . . . , n, were selected from a bivariate normal population
yields

ψc = Φ
( c− µD

σD

)
− Φ

(
−
c− µD
σD

)
,

where Φ(·) denotes the cumulative distribution function of the standard normal, and

µD = µ1 − µ2, σ2
D = σ11 + σ22 − 2σ12.

2Statistical Methods in Medical Research 26, 2487-2504.
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Motivating example (Svetnik et al., 2007)

Svetnik et al. (2007)3 conducted a clinical study designed to compare the automated
and semi-automated scoring of Polysomnographic (PSG) recordings used to diagnose
transient sleep disorders.

The study considered 82 patients who were given a sleep-inducing drug (Zolpidem 10
mg). Measurements of latency to persistent sleep (LPS: lights out to the beginning of
10 consecutive minutes of uninterrupted sleep) were obtained using six different
methods.

We focus on two of these methods: fully manual scoring (Manual) and automated
scoring by the Morpheus software (Automatic).

Let xi = (xi1, xi2)>, for i = 1, . . . , 82, be the log(LPS) measurements obtained with
the manual and automatic methods, respectively.

3SLEEP 30, 1562-1574.
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Motivating example (Svetnik et al., 2007)
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Motivating example (Svetnik et al., 2007)

Sample estimators for ρc and ψc

Observations CCC ρ̂12 Ĉ12 CI (95%)
With all subjects4 0.674 (0.056) 0.715 0.943 (0.564, 0.785)
Obs. 1,30,79 removed 0.860 (0.028) 0.890 0.967 (0.806, 0.915)

Observations ψc SE CI (95%)
With all subjects 0.975 0.034 (0.909, 1.000)
Obs. 1,30,79 removed 0.999 0.001 (0.998, 1.000)

If subjects 1, 30 and 79 are eliminated from the dataset, the degree of agreement is

increased by 28% mainly due to an increase in ρ12 (also called precision).

4McBride (2005) suggested 0.650 as a cutt-off for the CCC.
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Motivating example (Svetnik et al., 2007)
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(a) case deletion plot for CCC
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Local influence diagnostics

To assess the influence of extreme observations on the maximum likelihood estimates,
Cook (1986)5 proposed to study the likelihood displacement

LD(ω) = 2{`(θ̂)− `(θ̂(ω))},

where θ̂ and θ̂(ω) are the MLE based on the postulated and perturbated models,
which are defined as

P = {p(x;θ) : θ ∈ Θ}
and,

Pω = {p(x;θ,ω) : θ ∈ Θ,ω ∈ Ω},

respectively, with ω ∈ Ω ⊂ Rq satisfying Pω0 = P, for a null perturbation, ω0.

5Journal of the Royal Statistical Society, Series B 48, 133-169
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Local influence diagnostics

Let f(ω) be a measure of influence. The main aim of the local influence is to analyze
the curvature of the influence surface ϕ(ω) = (ω>, f(ω))> at the critical point ω0.

Consider ω = ω0 + εh, where h is a unitary direction (‖h‖ = 1) and ε ∈ R. When
f(ω) = LD(ω) its local behavior around ε = 0 for a direction h can be characterized
by

Ch = h>F̈ h, F̈ =
∂2`(θ̂(ω))

∂ω∂ω>

∣∣∣
ω=ω0

.

Moreover, Cook (1986) shows that

F̈ = 2∆>(−L̈)−1∆,

with

L̈ =
∂2`(θ)

∂θ∂θ>
, ∆ =

∂2`(θ|ω)

∂θ∂ω>
,

which must be evaluated at θ = θ̂ and ω = ω0, and `(θ) and `(θ|ω) denote the

log-likelihood functions arising from P and Pω .
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Local influence diagnostics

For general objective functions, f(ω), we have that (Cook, 1986) the normal
curvature assumes the form

Cf,h =
h>Hfh

(1 +∇>f ∇f )h>(I +∇f∇>f )h
,

where ∇f = ∂f(ω)/∂ω
∣∣
ω=ω0

and Hf = ∂2f(ω)/∂ω∂ω>
∣∣
ω=ω0

, whereas the

conformal normal curvature in the direction h evaluated at ω0 (Poon and Poon,
1999)6 is given by

Bf,h =
h>Hfh

‖Hf‖Mh>(I +∇f∇>f )h
.

An interesting property of the conformal curvature is that 0 ≤ |Bf,h| ≤ 1.

6Journal of the Royal Statistical Society, Series B 61, 51-61
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Local influence diagnostics

The first-order approach for local influence (Cadigan and Farrell, 2002)7 is measured
using the directional derivative of f(ω), which is given by

Sf,h =
∂f(ω)

∂ε

∣∣∣
ε=0

= h>∇f ,

where ∇f = ∂f(ω)/∂ω|ω=ω0 . In the case that ∇f 6= 0, the direction of the
maximum local slope is

hmax =
∇f
‖∇f‖

.

Remark:

First-order local influence may be unable to detect some significant directions with
large curvature (see Wu and Luo 19938 and Cadigan and Farrell, 2002).

7Applied Statistics 51, 469-483.
8Journal of the Royal Statistical Society, Series B 55, 929-936.
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Local influence diagnostics

To construct influence measures of the first and second order, Zhu et al. (2007)9

introduced the matrix G(ω) defined as the Fisher information matrix with respect to
ω, with elements

gij(ω) = Eω

{
∂`(θ|ω)

∂ωi

∂`(θ|ω)

∂ωj

}
, i, j = 1, . . . , n,

where Eω(·) indicates that the expectation is taken with respect to the density
function p(x;θ,ω).

The first-order influence measure (FI) in the direction h is given by

FIf,h =
h>∇f∇>f h

h>G(ω0)h
,

The second-order influence measure (SI) in the direction h is given by

SIf,h =
h>H̃fh

h>G(ω0)h
,

where G(ω0) is the metric tensor matrix evaluated at ω0.

9The Annals of Statistics 35, 2565-2588.
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Local influence diagnostics

In the definition of SIf,h, H̃f denotes the covariant Hessian matrix at ω0, with
(i, j)th element given by(

H̃f

)
ij

=
∂

∂ωi

(∂f(ω)

∂ωj

)∣∣∣
ω=ω0

−
∑
s,r

gr,s(ω)Γ0
ijs(ω)

(∂f(ω)

∂ωr

)∣∣∣
ω=ω0

,

in which gr,s(ω) is the (r, s)th element of G(ω)−1 and

Γ0
ijs(ω) =

1

2

{
∂

∂ωi
g(ω)js +

∂

∂ωj
gis(ω)−

∂

∂ωs
gij(ω)

}
,

denotes the Christoffel symbol for the Lévi-Civita connection.
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Influence measures for CCC and PA

We consider ρ̂c(ω) and ψ̂c(ω) as objective functions

ρ̂c(ω) =
2σ̂12(ω)

σ̂11(ω) + σ̂22(ω) + (µ̂1(ω)− µ̂2(ω))2
,

and

ψ̂c(ω) = Φ
( c− µ̂D(ω)

σ̂D(ω)

)
− Φ

(
−
c− µ̂D(ω)

σ̂D(ω)

)
,

where µ̂D(ω) = µ̂1(ω)− µ̂2(ω), σ̂2
D(ω) = σ̂11(ω) + σ̂22(ω)− 2σ̂12(ω), and

µ̂j(ω) =
1∑n
i=1 ωi

n∑
i=1

ωixij ,

σ̂jk(ω) =
1∑n
i=1 ωi

n∑
i=1

ωi(xij − µ̂j(ω))(xik − µ̂k(ω)),

for j, k = 1, 2, and ω = (ω1, . . . , ωn)>.

15 / 30



Influence measures for CCC and PA

The density of the perturbed model, is given by

p(x;θ,ω) =
n∏
i=1

[
(2π)−d/2|ω−1

i Σ|−1/2 exp
{
− 1

2
ωi(xi − µ)>Σ−1(xi − µ)

}]
.

The null perturbation is ω0 = 1n in which case Pω0 = P and `(θ|ω0) = `(θ).

This yields to the matrix G(ω0) = In, and we verify that the perturbation scheme
induced by the model Pω is appropiate.

The first- and second-order influence measures are reduced to

FIf,h = h>∇f∇>f h, and SIf,h = h>H̃fh,

respectively, for each objective function, either ρ̂c(ω) or ψ̂c(ω).

16 / 30



Influence measures for CCC and PA

The first-order derivative required in FIρ̂c,h, as well as Cρ̂c,h and Bρ̂c,h, assumes the
form

∇ρ̂c =
ρ̂c

nσ̂12

(
z1 � z2 − σ̂121

)
−

ρ̂2c
2nσ̂12

z∗,

where zj = (z1j , . . . , znj)
> with zij = zij − µ̂j , for i = 1, . . . , n; j = 1, 2,

z∗ = (z1 � z1 − σ̂111n) + (z2 � z2 − σ̂221n) + 2(µ̂1 − µ̂2)(z1 − z2),

and � represents the Hadamard product.

Moreover, H̃ ρ̂c = H ρ̂c + diag(∇ρ̂c ), with

H ρ̂c = Γ1 − Γ2 − Γ3.

For definition of Γ1, Γ2 and Γ3 see Leal et al. (2019).

17 / 30



Influence measures for CCC and PA

Furthermore ∇
ψ̂c

= ∂ψ̂c(ω)/∂ω|ω=ω0 assumes the form

∇
ψ̂c

= −
2

σ̂2
D

φ
( c− µ̂D

σ̂D

)
s,

with

s = σ̂D(Z1 −Z2) +
1

2

( c− µ̂D
σ̂D

){n− 2

n
(Z1 −Z2)� (Z1 −Z2)− σ̂2

D1
}
,

where φ(·) denotes the density funtion of the standard normal.

H
ψ̂c

= ∂2ψ̂c(ω)/∂ω∂ω>|ω=ω0 can be written as,

H
ψ̂c

= 2φ
( c− µ̂D

σ̂D

){
∆1 −

1

σ̂2
D

(∆2 + ∆3 + ∆4)−
1

σ̂4
D

ss>
}
.

Details on the definition of ∆1,∆2,∆3 and ∆4 can be found in Leal et al. (2019).
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Monte Carlo simulation study

We generate 500 datasets of sample sizes n = 25, 50, 100 and 200 from N2(µ,Σ),
with

µ =

(
0
0

)
, Σ =

(
1 0.95

0.95 1

)
.

To introduce an outlier, for each dataset, a single observation of the second variable
x2 was changed to x2 + δ, where δ = 0.5, 1.5, 2.0, 2.5, 3.0 and 3.5.

We find the unitary direction related to the maximum local slope, normal and confor-
mal curvatures and first- and second-order influence measures for ρ̂c(ω) and ψ̂(ω).

For each δ, the percentages of detecting the outlier were computed using the following
threshold:

Mj = |hmax|j > M + 2 sd(M),

where sd(M) denotes the standard deviation of Mj , j = 1, . . . , n.

All the diagnostic measures described in our work have been implemented in an R

code available at github10

10URL: https://github.com/faosorios/CCC/
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Monte Carlo simulation study: A typical dataset

Scatter plot of a typical dataset (with δ = 2) from the simulation experiment:
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Monte Carlo simulation study

Outlier detection percentage using ρ̂c(ω) as objective function

n Influence δ
measure 0.5 1.0 1.5 2.0 2.5 3.0 3.5

25 C 11.4 33.8 66.4 77.8 86.4 93.4 95.4
B 11.4 33.8 66.4 77.8 86.4 93.4 95.4
FI 28.4 74.4 96.0 99.0 99.8 100.0 100.0
SI 11.4 33.8 66.4 77.8 86.4 93.4 95.4

FI and SI 6.4 27.4 63.2 76.8 86.2 93.4 95.4
50 C 9.6 34.2 59.4 77.4 90.0 96.4 97.0

B 9.6 34.2 59.4 77.4 90.0 96.4 97.0
FI 26.0 76.0 96.4 100.0 100.0 100.0 100.0
SI 9.6 34.2 59.4 77.4 90.0 96.4 97.0

FI and SI 5.6 28.4 58.0 77.4 90.0 96.4 97.0
100 C 11.8 30.8 53.8 74.8 92.4 98.4 98.0

B 11.8 30.8 53.8 74.8 92.4 98.4 98.0
FI 27.0 77.2 97.2 100.0 100.0 100.0 100.0
SI 11.8 30.8 53.8 74.8 92.4 98.4 98.0

FI and SI 8.8 26.8 52.8 74.8 92.4 98.4 98.0
200 C 16.0 42.8 58.2 68.0 89.6 98.2 99.0

B 16.0 42.8 58.2 68.0 89.6 98.2 99.0
FI 26.4 79.2 97.2 100.0 100.0 100.0 100.0
SI 16.0 42.8 58.2 68.0 89.6 98.2 99.0

FI and SI 9.6 36.6 57.0 68.0 89.6 98.2 99.0
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Monte Carlo simulation study

Outlier detection percentage using ψ̂c(ω)11 as objective function

n Influence δ
measure 0.5 1.0 1.5 2.0 2.5 3.0 3.5

25 C 24.6 77.6 98.2 100.0 100.0 100.0 100.0
B 24.6 77.6 98.2 100.0 100.0 100.0 100.0
FI 26.4 81.4 98.6 100.0 100.0 100.0 100.0
SI 24.6 77.6 98.2 100.0 100.0 100.0 100.0

FI and SI 24.6 77.4 98.2 100.0 100.0 100.0 100.0
50 C 23.4 74.0 97.8 100.0 100.0 100.0 100.0

B 23.4 74.0 97.8 100.0 100.0 100.0 100.0
FI 27.0 81.4 98.2 100.0 100.0 100.0 100.0
SI 23.4 74.0 97.8 100.0 100.0 100.0 100.0

FI and SI 23.4 74.0 97.6 100.0 100.0 100.0 100.0
100 C 17.2 58.8 94.6 99.8 100.0 100.0 100.0

B 17.2 58.8 94.6 99.8 100.0 100.0 100.0
FI 26.8 82.2 98.4 100.0 100.0 100.0 100.0
SI 17.2 58.8 94.6 99.8 100.0 100.0 100.0

FI and SI 16.8 58.2 94.6 99.8 100.0 100.0 100.0
200 C 16.8 59.4 89.2 98.8 100.0 100.0 100.0

B 16.8 59.4 89.2 98.8 100.0 100.0 100.0
FI 27.4 83.6 98.8 100.0 100.0 100.0 100.0
SI 16.8 59.4 89.2 98.8 100.0 100.0 100.0

FI and SI 15.8 57.4 89.0 98.8 100.0 100.0 100.0

11c = 2 was used.
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Monte Carlo simulation study: Index plot of |hmax| for ρ̂c(ω) Slide 20
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(a) normal curvature, C
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(b) conformal curvature, B
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Monte Carlo simulation study: Index plot of |hmax| for ψ̂c(ω)
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(a) normal curvature, C
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(b) conformal curvature, B
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Transient sleep disorder (Svetnik et al., 2007)

This dataset was previously analyzed by Feng et al. (2015)12 using a robust approach
within a Bayesian framework.

Figure Slide 6 reveals that observations 1, 30 and 79 are outside the limits of
agreement and therefore can be identified as potential outliers.

Consider the percentage of change of the ML estimates for the fitted model:

Estimate with all obs. 1,30,79 change
observations removed (%)

µ̂1 2.554 2.526 -1.090
µ̂2 2.309 2.313 0.190

det(Σ̂) 0.460 0.156 -66.171

12Journal of Biopharmaceutical Statistics 25, 490-507.
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Transient sleep disorder (Svetnik et al., 2007)

Percentage of change for ρ̂c, ψ̂c and the log-likelihood function:

Observations ρ̂c change ψ̂c change log-likelihood
removed (%) (%)
— 0.674 — 0.975 — -200.890
1 0.715 6 0.986 1 -192.990
30 0.749 11 0.992 2 -186.448
79 0.724 7 0.990 1 -185.907
1, 30 0.795 18 0.997 2 -175.741
1, 79 0.770 14 0.996 2 -175.982
30, 79 0.808 20 0.999 2 -166.688
1, 30, 79 0.860 28 1.000 3 -150.728
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Transient sleep disorder: Index plot of |hmax| for ρ̂c(ω)
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Transient sleep disorder: Index plot of |hmax| for ψ̂c(ω)
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(a) normal curvature, C
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(b) conformal curvature, B
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Concluding remarks and future work

I Influential data may distort the estimation of the CCC and PA leading to incor-
rect decisions (replacing one measurement method with another when their degree of

agreement is not really true).

I Several diagnostic measures to detect influential data on the estimates of the
CCC and PA were proposed.

I A computational implementation of such diagnostic techniques has been made
publicly available.

I The empirical results seem to suggest that for our problem, first-order influence
measures are efficient for the identification of influential observations.

I Extend the estimation and diagnostics for the CCC and PA considering a
multivariate t-distribution.

I Influence diagnostics for the matrix-based concordance correlation coefficient.
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