Assessing the Concordance between Two Georeferenced Variables

Ronny Vallejos

Departamento de Matemática Universidad Técnica Federico Santa María Valparaíso, Chile

Joint work with Aaron Ellison, Andrew Richardson and Javier Pérez

Math-AmSud Project , August 04, 2020

Outline

 \Box Introduction

□ Spatial CCC

A first Extension

A Nonparametric Perspective

Motivation

- \Box Measurements of agreement are needed to assess the acceptability of new methodology.
- \Box This is important in an assay validation or an instrument validation process.
- \Box Requiring a new measurement to be identical to the truth is often impractical.
- \boxdot Agreement with continuos measurements (Barnhart: et al., 2007)
	- \blacktriangleright Descriptive tools
	- Unscaled summary indices based on differences
	- Scaled summary indices attaining values betweem -1 and 1. (A concordance correlation coefficient was studied by Lin (1989)
- \Box How to include spatial information in a concordance coefficient?

Poor Agreement of the Correlation Coefficient

Poor Agreement of the t-test

 $0 - 5$

Variation From the 45 Degree Line

The Concordance Correlation Coefficient Definition

Assume that the join distribution of *X* and *Y* has finite second moment with means μ_1 and μ_2 , variances σ_1^2 and σ_2^2 , and covariance σ_{12} .

\n- □ The mean squared deviation of
$$
D = Y - X
$$
 is\n
$$
\text{MSD} = \epsilon^2 = \mathbb{E}[D^2] = \mathbb{E}[(Y - X)^2]
$$
\n
$$
= (\mu_1 - \mu_2)^2 + \sigma_2^2 + \sigma_1^2 - 2\sigma_2
$$
\n
\n- □ The Concordance Correlation Coefficient (Lin, 1989) is\n
$$
\rho_c = 1 - \frac{\epsilon^2}{\epsilon^2|\rho = 0} = \frac{2\sigma_{21}}{\sigma_2^2 + \sigma_1^2 + (\mu_2^2 - \mu_1^2)^2}.
$$
\n
\n

The Concordance Correlation Coefficient

Properties

$$
\begin{aligned}\n\Box \quad & \rho_c = \alpha \cdot \rho, \text{ where } \alpha = \frac{2}{w + 1/w + v^2}, \, w = \frac{\sigma_2}{\sigma_1}, \, v = \frac{\mu_2 - \mu_1}{\sqrt{\sigma_2 \sigma_1}}, \text{ and} \\
\rho = \text{corr}(X, Y). \\
\Box \quad & |\rho_c| \leq 1. \\
\Box \quad & \rho_c = 0 \text{ if and only if } \rho = 0. \\
\Box \quad & \rho_c = \rho \text{ if and only if } \sigma_2 = \sigma_1 \text{ and } \mu_2 = \mu_1.\n\end{aligned}
$$
\nSample Concordance

The sample counterpart of ρ_c is given as

$$
\widehat{\rho}_c = \frac{2s_{21}}{s_2^2 + s_1^2 + (\overline{y} - \overline{x})^2}.
$$

Our Proposal

 \Box The goal is to construct a concordance coefficient that takes into account the spatial lag *h*, similarly to the variogram and cross-variogram.

$$
\begin{aligned} \n\Box \quad & C_{11}(\boldsymbol{h}) = \mathrm{cov}[X(\boldsymbol{s}), X(\boldsymbol{s}+\boldsymbol{h})], \\ \nC_{22}(\boldsymbol{h}) = \mathrm{cov}[Y(\boldsymbol{s}), Y(\boldsymbol{s}+\boldsymbol{h})]. \\ \nC_{12}(\boldsymbol{h}) = \mathrm{cov}[X(\boldsymbol{s}), Y(\boldsymbol{s}+\boldsymbol{h})]. \n\end{aligned}
$$

 \Box The idea is to define a new coefficient of the form

$$
\rho_c = 1 - \frac{\epsilon^2}{\epsilon^2 |\rho = 0},
$$

but using the above ingredients.

Our Definition

Definition

Let $(X(s), Y(s))^{\top}$ be a bivariate second order stationary random field with $s \in \mathbb{R}^2$, mean $(\mu_1, \mu_2)^\top$ and covariance function

$$
C(\bm{h}) = \begin{pmatrix} C_{11}(\bm{h}) & C_{12}(\bm{h}) \\ C_{21}(\bm{h}) & C_{22}(\bm{h}) \end{pmatrix}.
$$

Then the spatial concordance coefficient is defined as

$$
\rho_c(\mathbf{h}) = \frac{\mathbb{E}[(Y(\mathbf{s}+\mathbf{h}) - X(\mathbf{s}))^2]}{\mathbb{E}[(Y(\mathbf{s}+\mathbf{h}) - X(\mathbf{s}))^2 | C_{12}(\mathbf{0}) = 0]} = \frac{2C_{21}(\mathbf{h})}{C_{11}(\mathbf{0}) + C_{22}(\mathbf{0}) + (\mu_1 - \mu_2)^2}.
$$

Some Features

\n- □
$$
\rho_c(\mathbf{h}) = \eta \cdot \rho_{21}(\mathbf{h})
$$
, where $\eta = \frac{2\sqrt{C_{11}(0)C_{22}(0)}}{C_{11}(0) + C_{22}(0) + (\mu_1 - \mu_2)^2}$.
\n- □ $|\rho_c(\mathbf{h})| \leq 1$.
\n- □ $\rho_c(\mathbf{h}) = 0$ iff $\rho_{21}(\mathbf{h}) = 0$.
\n- □ $\rho_c(\mathbf{h}) = \rho_{21}(\mathbf{h})$ iff $\mu_1 = \mu_2$ and $C_{11}(0) = C_{22}(0)$.
\n- □ For the nonseparable covariance function $C_{ij}(\mathbf{h}) = \rho_{ij}\sigma_i\sigma_j R(\mathbf{h}, \psi_{ij}), \ \rho_{ii} = 1, i, j = 1, 2$.
\n

where $R(h, \psi)$ is a univariate correlation function, we have

$$
\rho_c(\mathbf{h}) = \eta \cdot \rho_{12},
$$

where
$$
\eta = \frac{2\sigma_1 \sigma_2 R(\mathbf{h}, \psi_{12})}{\sigma_1^2 R(\mathbf{0}, \psi_{11}) + \sigma_2^2 R(\mathbf{0}, \psi_{22})}.
$$

Some Features

\n- □ In particular, If
$$
C_{11}(\boldsymbol{h}) = \sigma_1^2 M(\boldsymbol{h}, \nu_1, a_1)
$$
, $C_{22}(\boldsymbol{h}) = \sigma_2^2 M(\boldsymbol{h}, \nu_2, a_2)$, and $C_{21}(\boldsymbol{h}, \nu_{12}, a_{12}) = \rho_{12} \sigma_1 \sigma_2 M(\boldsymbol{h}, \nu_{12}, a_{12})$, where $M(\boldsymbol{h}, \nu, a) = \frac{2^{1-\nu}}{\Gamma(\nu)} (a||h||)^{\nu} K_{\nu}(a||h||)$, and $K_{\nu}(\cdot)$ is a modified Bessel function of the second type and $\rho_{12} = \text{cor}[X(s_i), Y(s_j)]$, then
\n

$$
\rho_c(\mathbf{h}) = \frac{2\sigma_1 \sigma_2 \rho_{12} M(\mathbf{h}, \nu_{12}, a_{12})}{\sigma_1^2 + \sigma_2^2} = \eta \cdot \rho_{12},
$$

where $\eta = \frac{2\sigma_1 \sigma_2 M(\mathbf{h}, \nu_{12}, a_{12})}{\sigma_1^2 + \sigma_2^2}$.
 \Box In the previous scheme, if $\nu_{12} = 1/2$, then

$$
\rho_c(\mathbf{h}) = \eta \cdot \rho_{12},
$$

where
$$
\eta = \frac{2\sigma_1\sigma_2}{\sigma_1^2 + \sigma_2^2}e^{-a_{12}||h||}
$$
.
Spatial Concordance

A Local Approach

- \Box Let $(X(s), Y(s))$ [⊤], $s \in D \subset \mathbb{Z}^2$ be a bivariate random field.
- \Box Suposse now that D is a finite rectangular grid of \mathbb{Z}^2 and that we split D into p subgrids, say D_i , $i = 1, \ldots, p$. Then the process $(X_i(\mathbf{s}), Y_i(\mathbf{s}))^\top$, $s \in D_i$, represents two subimages defined on *Di.*
- \Box Assume that each process $(X_i(\mathbf{s}), Y_i(\mathbf{s}))^{\top}$ has a covariance function of the form

$$
C_{jk}^{i}(\boldsymbol{h})=\left[\rho_{jk}^{i}\sigma_{j}^{i}\sigma_{k}^{i}R(\boldsymbol{h},\psi_{i})\right]_{j,k=1}^{2},\rho_{jk}^{i}=1,i=1,...p,\ j,k=1,2.
$$

 \Box Let $\rho_c^i(\bm{h})$ be the spatial concordance correlation coefficient of each $(X_i(\mathbf{s}), Y_i(\mathbf{s}))^{\top}$. Then

$$
\rho_c^i(\mathbf{h}) = \frac{2\sigma_1^i \sigma_2^i}{(\sigma_1^i)^2 + (\sigma_2^i)^2} \rho_{12}^i R(\mathbf{h}, \psi_i).
$$

A Local Approach

 \Box In order to summarize the local concordance coefficients defined for each window, we propose two global concordance coefficients

$$
\begin{aligned}\n\Box \ \rho_1(\boldsymbol{h}) &= \frac{1}{p} \sum_{i=1}^p \rho_c^i(\boldsymbol{h}).\\
\Box \ \rho_2(\boldsymbol{h}) &= \frac{2\overline{\sigma}_1 \overline{\sigma}_2}{\overline{\sigma}_1^2 + \overline{\sigma}_2^2} \overline{\rho}_{12} R(\boldsymbol{h}, \overline{\psi}),\n\end{aligned}
$$

where $\overline{\sigma}_{1}, \overline{\sigma}_{2}, \overline{\rho}_{12}, \psi$ are the average of the values computed for each sub-image.

 \Box The sample counterparts of $\rho_1(\mathbf{h})$ and $\rho_2(\mathbf{h})$ are

$$
\widehat{\rho}_1(\mathbf{h}) = \frac{1}{p} \sum_{i=1}^p \widehat{\rho}_c^{\ i}(\mathbf{h}), \quad \widehat{\rho}_2(\mathbf{h}) = \frac{2 \widehat{\overline{\sigma}}_1 \widehat{\overline{\sigma}}_2}{\widehat{\overline{\sigma}}_1^2 + \widehat{\overline{\sigma}}_2^2} \widehat{\overline{\rho}}_{12} R(\mathbf{h}, \widehat{\overline{\psi}}).
$$

Estimation and Asymptotics

- \Box Let $\{Y(\boldsymbol{s}): \boldsymbol{s} \in D \subset \mathbb{R}^d\}$ be a Gaussian random field such that *Y*(\cdot) is observed on $D_n = \{s_1, s_2, \ldots, s_n\} \subset D$.
- \Box Denote $\boldsymbol{Y} = (Y(\boldsymbol{s}_1), \ldots, Y(\boldsymbol{s}_n))^\top$ and assume that $\mathbb{E}[\boldsymbol{Y}] = \boldsymbol{X}\boldsymbol{\beta}$, $cov(Y(t), Y(s)) = \sigma(t, s; \theta), X$ is $n \times p$ with rank $(X) = p$, $\boldsymbol{\beta} \in \mathbb{R}^p$ and $\boldsymbol{\theta} \in \mathbb{R}^q$.
- Ξ Let $\Sigma = \Sigma(\theta)$ be the covariance matrix of Y such that the *ij*-th element of Σ is $\sigma_{ij} = \sigma(s_i, s_j; \theta)$.
- \Box The estimation of θ and β can be made by ML estimation, maximizing

$$
L = L(\boldsymbol{\beta}, \boldsymbol{\theta}) = \text{Consts} - \frac{1}{2} \ln |\boldsymbol{\Sigma}^{-1}| - \frac{1}{2} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^{\top} \boldsymbol{\Sigma}^{-1} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})
$$

Estimation and Asymptotics

Theorem

(Mardia and Marshall, 1984) Let $\lambda_1 \leq \cdots \leq \lambda_n$ be the eigenvalues of $\boldsymbol{\Sigma}$, and let those of $\mathbf{\Sigma}_i = \frac{\partial \mathbf{\Sigma}}{\partial \theta_i}$ and $\mathbf{\Sigma}_{ij} = \frac{\partial^2 \mathbf{\Sigma}}{\partial \theta_i \partial \theta_j}$ be λ_k^i and λ_k^{ij} , $k = 1, \ldots, n$, such that $|\lambda_1^i| \leq \cdots \leq |\lambda_n^i|$ and $|\lambda_1^{ij}| \leq \cdots \leq |\lambda_n^{ij}|$ for $i,j=1,\cdots,q$. Suppose that as $n \to \infty$

- (i) $\lim_{n \to \infty} \lambda_n = C < \infty$, $\lim_{n \to \infty} |\lambda_n^i| = C_i < \infty$ y $\lim_{n \to \infty} |\lambda_n^{i,j}| = C_{ij} < \infty$ for all $i, j = 1, \ldots, q$.
- (ii) $\|\mathbf{\Sigma}_i\|^{-2} = \mathcal{O}(n^{-\frac{1}{2}-\delta})$ for some $\delta > 0$, for $i = 1, \ldots, q$.
- $\left(\text{iii)} \;\; \textsf{For all} \; i,j=1,\ldots,q, \, a_{ij}=\lim \left[t_{ij}/(t_{ii}t_{jj})^{\frac{1}{2}}\right] \; \textsf{exists, where}$ $t_{ij} = \text{tr}\left(\mathbf{\Sigma}^{-1}\mathbf{\Sigma}_i\mathbf{\Sigma}^{-1}\mathbf{\Sigma}_j\right)$ and $\overline{\mathbf{A}} = (a_{ij})$ is nonsingular. (iv) $\lim_{h \to 0} (X^{\top}X)^{-1} = 0.$

 $\mathsf{Then} \ (\widehat{\boldsymbol{\beta}}^\top, \widehat{\boldsymbol{\theta}_n^\top})^\top \overset{d}{\rightarrow} \mathcal{N}\left((\boldsymbol{\beta}^\top, \boldsymbol{\theta}^\top)^\top, \boldsymbol{F}_n(\boldsymbol{\theta})^{-1}\right), \text{ as } n \rightarrow \infty, \text{ in an increasing}$ domain sense, where $F_n(\theta)$ is the Fisher information matrix of β and θ and [Spatial Concordance](#page-0-0)

Related Work

- \boxdot Mardia y Marshall (1984) proved that for a Gaussian process with exponential covariance function these conditions are satisfied.
- \Box Acosta and Vallejos (2018) showed that for the covariance (Matérn, $\nu_{12} = n + 1/2$

$$
C_{ij}(\boldsymbol{h}) = \rho_{ij}\sigma_i\sigma_j \exp(-a_{12} \|\boldsymbol{h}\|) \sum_{k=0}^n c_k (2a_{12} \|\boldsymbol{h}\|)^{n-k}, \ i = 1, 2,
$$

where $c_k = \frac{(n+k)!}{(2n)!} \binom{n}{k}$, the conditions of the Theorem are satisfied. Here $\theta = (\sigma_1^2, \sigma_2^2, \rho_{12}, a_{12}).$

 \boxdot Bevilacqua et al. (2015) proved that for a bivariate Gaussian process with the covariance (Matérn, $\nu_{12} = 1/2$)

$$
C_{ij}(\mathbf{h}) = \rho_{ij}\sigma_i\sigma_j \exp(a_{12}||\mathbf{h}||), i = 1, 2,
$$

the conditions of the Theorem hold. Here $\boldsymbol{\theta} = (\sigma_1^2, \sigma_2^2, \rho_{12}, a_{12}).$

Asymptotics for the Spatial Concordance

$$
\Box \ \hat{\rho}^c(\mathbf{h}) = \hat{\eta} \cdot \hat{\rho}_{12}
$$

$$
\Box \text{ If } \boldsymbol{\theta} = (\sigma_1^2, \sigma_2^2, \boldsymbol{\psi}_{11}^\top, \boldsymbol{\psi}_{22}^\top, \boldsymbol{\psi}_{12}^\top)^\top. \text{ Then } \hat{\rho}^c(\boldsymbol{h}) = g(\widehat{\boldsymbol{\theta}}_n).
$$

 \Box The Theorem of Mardia and Marshall (1984) works here for $\bm{\theta}_n$. The asymptotic normality of $g(\bm{\theta}_n)$ can be handled via the Delta Method for $q(\cdot)$ differentiable. Indeed,

$$
\left(\nabla g(\boldsymbol{\theta})^{\top} \boldsymbol{F}_n(\boldsymbol{\theta})^{-1} \nabla g(\boldsymbol{\theta})\right)^{-1/2} \left(g(\widehat{\boldsymbol{\theta}}_n) - g(\boldsymbol{\theta})\right) \xrightarrow{d} \mathcal{N}(0,1), \text{ as } n \to \infty.
$$

Computation of the Asymptotic Variance

 \Box For the covariance Matérn, $\nu_{12} = 1/2$,

$$
\nabla g(\theta)^{\top} \mathbf{F}_n(\theta)^{-1} \nabla g(\theta) = \frac{2\sigma_1^2 \sigma_2^2}{(\sigma_1^2 + \sigma_2^2)^2} \left[\frac{\rho_{12}^2 (\sigma_1^2 - \sigma_2^2)^2}{(\sigma_1^2 + \sigma_2^2)^2 n \mathbf{C}} + \frac{2n}{\mathbf{C}} + \frac{2\|\mathbf{h}\|^2 \rho_{12}^2 (\rho_{12}^2 - 1)^2}{n \mathbf{C}} + \frac{\rho_{12}^2 (\sigma_1^2 - \sigma_2^2)^2 (\left[\text{tr}(\mathbf{B}) \right]^2 - 2\rho_{12}^2 \mathbf{C})}{(\sigma_1^2 + \sigma_2^2)^2} \right] \times \exp\left(-2a_{12} \|\mathbf{h}\|\right),
$$

$$
\Box \ \boldsymbol{B} = \left(\boldsymbol{R}^{-1} \frac{\partial \boldsymbol{R}}{\partial a_{12}}\right),
$$

$$
\Box \ \ C = n \text{tr}(\boldsymbol{B}^2) - [\text{tr}(\boldsymbol{B})]^2.
$$

INIVERSIDAD TE FEDERICO SANTA MARIA

Hypothesis Testing

 \Box As a consequence of the asymptotic normality, an approximate hypothesis testing problem of the form

 $H_0: \rho_c(h) = \rho_0$ versus $H_1: \rho_c(h) \neq \rho_0$,

can be implemented, for a fixed *h*.

 \Box An approximate confidence interval of the form

$$
CI(\rho_c(\boldsymbol{h})) = \widehat{\rho}_c(\boldsymbol{h}) \pm z_{\alpha/2} \sqrt{v},
$$

can be constructed.

- \Box The computation of the variance is a challenging problem for other correlation structures.
- \Box Resampling techniques could be one alternative.

Main Result

Theorem

Let $(X(s), Y(s))$ ^T be a zero mean Gaussian random field with a *Wendland-Gneiting bivariate covariance function of the form*

$$
C_{ij}(\boldsymbol{h}) = \left[\rho_{ij}\sigma_i\sigma_j\left(1+(\nu+1)\frac{\|\boldsymbol{h}\|}{b_{12}}\right)\left(1-\frac{\|\boldsymbol{h}\|}{b_{12}}\right)^{\nu+1}\right]^2, i,j=1,2.
$$

where $\nu > 0$ *is fixed.* Then \int *f*_{*c*} *(h*) = *g*(σ_1^2 , σ_2^2 , ρ_{12} , b_{12}) = $\frac{2\rho_{12}\sigma_1\sigma_2}{\sigma_1^2\sigma_2^2}$ $\left(1 + (\nu + 1) \frac{\|\mathbf{h}\|}{b_{12}}\right) \left(1 - \frac{\|\mathbf{h}\|}{b_{12}}\right)$ $\bigvee^{\nu+1}$ +

 The ML estimator of ◊, ' *◊n, is asymptotically normal. i.e.,* $(\nabla g(\boldsymbol{\theta})^{\top} \boldsymbol{F}_n(\boldsymbol{\theta})^{-1} \nabla g(\boldsymbol{\theta})) \xrightarrow{-1/2} (g(\widehat{\boldsymbol{\theta}}_n) - g(\boldsymbol{\theta})) \xrightarrow{d} \mathcal{N}(0,1), \text{ as } n \to \infty.$

 $0 - 22$

An Application

 \Box Two images of size 1600×1200 from Harvard Forest have been considered.

- Figure 1: Two images taken from the same site in Harvard Forest, mainly red oak cups. Left: Image taken with an outdoor StarDot NetCam XL 3MP camera. Right: Image taken with an outdoor Axis 223M camera.
- \Box Both images have been transformed to a grey scale and preprocessed.

Global Model Fitting

- \Box Lin's concordance: $\hat{\rho}_c = 0.3177$.
- \Box We consider a Gaussian the random field $(X(s), Y(s))^{\top}$, $s \in \mathbb{R}^2$.
- \Box We fit a bivariate Matérn covariance model of the form

$$
C_{11}(h) = \sigma_1^2 M(h|\nu_1, a_1),
$$

\n
$$
C_{22}(h) = \sigma_2^2 M(h|\nu_2, a_2),
$$

\n
$$
C_{12}(h) = C_{21}(h) = \rho_{12}\sigma_1\sigma_2 M(h|\nu_{12}, a_{12}).
$$

Results

UNIVERSIDAD TECNICA
FEDERICO SANTA MARIA

Local Model Fitting

- \boxdot We splitted the original images into 110 rectangular images of size 19×26 .
- \Box We fitted bivariate Matérn covariance functions of the form

$$
C_{11}(h) = \sigma_1^2 M(h|\nu_1, a_1),
$$

\n
$$
C_{22}(h) = \sigma_2^2 M(h|\nu_2, a_2),
$$

\n
$$
C_{12}(h) = C_{21}(h) = \rho_{12}\sigma_1\sigma_2 M(h|\nu_{12}, a_{12}).
$$

for the 110 subimages.

Local Model Fitting

 \boxdot We compute the global spatial concordance coefficients

$$
\widehat{\rho}_1(\boldsymbol{h}) = \frac{1}{p} \sum_{i=1}^p \widehat{\rho}_c^{\;i}(\boldsymbol{h}),
$$

and

$$
\widehat{\rho}_2(\boldsymbol{h}) = \frac{2\widehat{\overline{\sigma}}_1\widehat{\overline{\sigma}}_2}{\widehat{\overline{\sigma}}_1^2 + \widehat{\overline{\sigma}}_2^2}\widehat{\overline{\rho}}_{12}M(\boldsymbol{h}|\widehat{\overline{\nu}}_{12}, \widehat{\overline{a}}_{12}),
$$

where $\overline{\sigma}_1, \overline{\hat{\sigma}}_2, \overline{\hat{\rho}}_{12}, \overline{\hat{\nu}}_{12},$ and $\overline{\hat{a}}_{12}$ are the average estimations computed using the 110 subimages.

0-27

Results

Figure 2: Global concordance coefficients.

References

- **1.** Bevilacqua, M., Vallejos, R., Velandia, D. 2015. Assessing the significance of the correlation between the components of a bivariate Gaussian random field. *Environmetrics* 26, 545–556.
- **2.** Barnhart, H. X., Haber, M. J., Lin, L. I. (2007). An overview on assessing agreement with continuous measurements. *Journal of Biopharmaceutical Statistics* 17, 529–569.
- **3.** Lin, L. I-K. (1989). A concordance correlation coefficient to evaluate reproducibility. *Biometrics* 45, 255–268.
- **4.** Mardia, K. V., Marshall, T. J. (1984). Maximum likelihood estimation of models for residual covariance in spatial regression. *Biometrika* 71, 135–146.
- **5.** Vallejos, R. , Pérez, J., Ellison, A., Richardson, A. (2020). A spatial concordance correlation coefficient with an application to image analysis. *Spatial Statistics* (to appear).

