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Motivation
� Measurements of agreement are needed to assess the

acceptability of new methodology.
� This is important in an assay validation or an instrument

validation process.
� Requiring a new measurement to be identical to the truth is

often impractical.
� Agreement with continuos measurements (Barnhart: et al.,

2007)
I Descriptive tools
I Unscaled summary indices based on di�erences
I Scaled summary indices attaining values betweem -1 and 1. (A

concordance correlation coe�cient was studied by Lin (1989)
� How to include spatial information in a concordance

coe�cient?
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The Concordance Correlation Coe�cient
Definition
Assume that the join distribution of X and Y has finite second
moment with means µ1 and µ2, variances ‡2

1 and ‡2
2, and

covariance ‡12.

� The mean squared deviation of D = Y ≠ X is

MSD = ‘2 = E[D2] = E[(Y ≠ X)2]
= (µ1 ≠ µ2)2 + ‡2

2 + ‡2
1 ≠ 2‡21.

� The Concordance Correlation Coe�cient (Lin, 1989) is

flc = 1 ≠ ‘2

‘2|fl = 0 = 2‡21
‡2

2 + ‡2
1 + (µ2

2 ≠ µ2
1)2 .
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The Concordance Correlation Coe�cient
Properties
� flc = – · fl, where – = 2

w + 1/w + v2 , w = ‡2
‡1

, v = µ2 ≠ µ1Ô
‡2‡1

, and

fl = corr(X, Y ).
� |flc| Æ 1.

� flc = 0 if and only if fl = 0.

� flc = fl if and only if ‡2 = ‡1 and µ2 = µ1.
Sample Concordance
The sample counterpart of flc is given as

‚flc = 2s21
s2

2 + s2
1 + (y ≠ x)2 .
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Our Proposal
� The goal is to construct a concordance coe�cient that takes

into account the spatial lag h, similarly to the variogram and
cross-variogram.

� C11(h) = cov[X(s), X(s + h)],
C22(h) = cov[Y (s), Y (s + h)].
C12(h) = cov[X(s), Y (s + h)].

� The idea is to define a new coe�cient of the form

flc = 1 ≠ ‘2

‘2|fl = 0 ,

but using the above ingredients.

Spatial Concordance
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Our Definition

Definition
Let (X(s), Y (s))€ be a bivariate second order stationary random
field with s œ R2, mean (µ1, µ2)€ and covariance function

C(h) =
A

C11(h) C12(h)
C21(h) C22(h)

B

.

Then the spatial concordance coe�cient is defined as

flc(h) = E[(Y (s + h) ≠ X(s))2]
E[(Y (s + h) ≠ X(s))2|C12(0) = 0] = 2C21(h)

C11(0) + C22(0) + (µ1 ≠ µ2)2 .

Spatial Concordance
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Some Features
� flc(h) = ÷ · fl21(h), where ÷ =

2


C11(0)C22(0)
C11(0) + C22(0) + (µ1 ≠ µ2)2 .

� |flc(h)| Æ 1.

� flc(h) = 0 i� fl21(h) = 0.

� flc(h) = fl21(h) i� µ1 = µ2 and C11(0) = C22(0).

� For the nonseparable covariance function
Cij(h) = flij‡i‡jR(h, Âij), flii = 1, i, j = 1, 2.

where R(h, Â) is a univariate correlation function, we have
flc(h) = ÷ · fl12,

where ÷ = 2‡1‡2R(h, Â12)
‡2

1R(0, Â11) + ‡2
2R(0, Â22) .

Spatial Concordance
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Some Features
� In particular, If C11(h) = ‡2

1M(h, ‹1, a1),
C22(h) = ‡2

2M(h, ‹2, a2), and
C21(h, ‹12, a12) = fl12‡1‡2M(h, ‹12, a12), where

M(h, ‹, a) = 21≠‹

�(‹) (aÎhÎ)‹K‹(aÎhÎ), and K‹(·) is a modified

Bessel function of the second type and fl12 = cor[X(si), Y (sj)],
Then

flc(h) = 2‡1‡2fl12M(h, ‹12, a12)
‡2

1 + ‡2
2

= ÷ · fl12,

where ÷ = 2‡1‡2M(h, ‹12, a12)
‡2

1 + ‡2
2

.

� In the previous scheme, if ‹12 = 1/2, then
flc(h) = ÷ · fl12,

where ÷ = 2‡1‡2
‡2

1 + ‡2
2

e≠a12||h||.
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A Local Approach
� Let (X(s), Y (s))€, s œ D µ Z2 be a bivariate random field.

� Suposse now that D is a finite rectangular grid of Z2 and that
we split D into p subgrids, say Di, i = 1, . . . , p. Then the
process (Xi(s), Yi(s))€, s œ Di, represents two subimages
defined on Di.

� Assume that each process (Xi(s), Yi(s))€ has a covariance
function of the form
Ci

jk(h) =
#
fli

jk‡i
j‡i

kR(h, Âi)
$2

j,k=1 , fli
jk = 1, i = 1, ...p, j, k = 1, 2.

� Let fli
c(h) be the spatial concordance correlation coe�cient of

each (Xi(s), Yi(s))€. Then

fli
c(h) = 2‡i

1‡i
2

(‡i
1)2 + (‡i

2)2 fli
12R(h, Âi).
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A Local Approach
� In order to summarize the local concordance coe�cients

defined for each window, we propose two global concordance
coe�cients

� fl1(h) = 1
p

qp
i=1 fli

c(h).

� fl2(h) = 2‡1‡2
‡2

1 + ‡2
2
fl12R(h, Â),

where ‡1, ‡2, fl12, Â are the average of the values computed
for each sub-image.

� The sample counterparts of fl1(h) and fl2(h) are

‚fl1(h) = 1
p

pÿ

i=1
‚fl i

c (h), ‚fl2(h) = 2‚‡1‚‡2
‚‡2

1 + ‚‡2
2

‚fl12R(h, ‚Â).
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Estimation and Asymptotics

� Let
)

Y (s) : s œ D µ Rd
*

be a Gaussian random field such that
Y (·) is observed on Dn = {s1, s2, . . . , sn} µ D .

� Denote Y = (Y (s1), . . . , Y (sn))€ and assume that E[Y ] = X—,
cov(Y (t), Y (s)) = ‡(t, s; ◊), X is n ◊ p with rank(X) = p,
— œ Rp and ◊ œ Rq.

� Let � = �(◊) be the covariance matrix of Y such that the ij-th
element of � is ‡ij = ‡(si, sj ; ◊).

� The estimation of ◊ and — can be made by ML estimation,
maximizing

L = L(—, ◊) = Conts≠ 1
2 ln

--�≠1--≠ 1
2 (Y ≠ X—)€ �≠1 (Y ≠ X—)

Spatial Concordance
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Estimation and Asymptotics
Theorem
(Mardia and Marshall, 1984) Let ⁄1 Æ · · · Æ ⁄n be the eigenvalues of � , and
let those of �i = ˆ�

ˆ◊i
and �ij = ˆ2�

ˆ◊iˆ◊j
be ⁄i

k and ⁄ij
k , k = 1, . . . , n, such

that |⁄i
1| Æ · · · Æ |⁄i

n| and |⁄ij
1 | Æ · · · Æ |⁄ij

n | for i, j = 1, · · · , q. Suppose that
as n æ Œ

(i) lim ⁄n = C < Œ, lim |⁄i
n| = Ci < Œ y lim |⁄ij

n | = Cij < Œ for all
i, j = 1, . . . , q.

(ii) Î�iÎ
≠2 = O(n≠ 1

2 ≠”) for some ” > 0, for i = 1, . . . , q.

(iii) For all i, j = 1, . . . , q, aij = lim
Ë
tij/(tiitjj) 1

2

È
exists, where

tij = tr
!
�≠1�i�≠1�j

"
and A = (aij) is nonsingular.

(iv) lim(X€X)≠1 = 0.

Then (‚—€, ‚◊€
n )€ d

≠æ N
!
(—€, ◊€)€, Fn(◊)≠1"

, as n æ Œ, in an increasing
domain sense, where Fn(◊) is the Fisher information matrix of — and ◊.
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Related Work
� Mardia y Marshall (1984) proved that for a Gaussian process with

exponential covariance function these conditions are satisfied.
� Acosta and Vallejos (2018) showed that for the covariance (Matérn,

‹12 = n + 1/2)

Cij(h) = flij‡i‡j exp(≠a12ÎhÎ)
nÿ

k=0
ck(2a12ÎhÎ)n≠k, i = 1, 2,

where ck =
(n + k)!

(2n)!

1
n
k

2
, the conditions of the Theorem are satisfied.

Here ◊ = (‡2
1 , ‡2

2 , fl12, a12).
� Bevilacqua et al. (2015) proved that for a bivariate Gaussian

process with the covariance (Matérn, ‹12 = 1/2)
Cij(h) = flij‡i‡j exp(a12||h||), i = 1, 2,

the conditions of the Theorem hold. Here ◊ = (‡2
1 , ‡2

2 , fl12, a12).
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Asymptotics for the Spatial Concordance

� ‚fl c(h) = ‚÷ · ‚fl12

� If ◊ = (‡2
1, ‡2

2, Â€
11, Â€

22, Â€
12)€. Then ‚fl c(h) = g( ‚◊n).

� The Theorem of Mardia and Marshall (1984) works here for
‚◊n. The asymptotic normality of g( ‚◊n) can be handled via the
Delta Method for g(·) di�erentiable. Indeed,
!
Òg(◊)€Fn(◊)≠1

Òg(◊)
"≠1/2 (g(‚◊n) ≠ g(◊)) d

≠æ N (0, 1), as n æ Œ.
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Computation of the Asymptotic Variance
� For the covariance Matérn, ‹12 = 1/2,

Òg(◊)€Fn(◊)≠1Òg(◊) = 2‡2
1‡2

2
(‡2

1 + ‡2
2)2

5
fl2

12(‡2
1 ≠ ‡2

2)2

(‡2
1 + ‡2

2)2nC

+2n

C
+ 2ÎhÎ2fl2

12(fl2
12 ≠ 1)2

nC

+ fl2
12(‡2

1 ≠ ‡2
2)2([tr(B)]2 ≠ 2fl2

12C)
(‡2

1 + ‡2
2)2

6

◊ exp (≠2a12ÎhÎ) ,

� B =
3

R≠1 ˆR

ˆa12

4
,

� C = ntr(B2) ≠ [tr(B)]2.

Spatial Concordance
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Hypothesis Testing
� As a consequence of the asymptotic normality, an approximate

hypothesis testing problem of the form
H0 : flc(h) = fl0 versus H1 : flc(h) ”= fl0,

can be implemented, for a fixed h.

� An approximate confidence interval of the form
CI(flc(h)) = ‚flc(h) ± z–/2

Ô
v,

can be constructed.

� The computation of the variance is a challenging problem for
other correlation structures.

� Resampling techniques could be one alternative.

Spatial Concordance
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Main Result
Theorem
Let (X(s), Y (s))€ be a zero mean Gaussian random field with a
Wendland-Gneiting bivariate covariance function of the form

Cij(h) =

C
flij‡i‡j

3
1 + (‹ + 1)ÎhÎ

b12

4 3
1 ≠

ÎhÎ

b12

4‹+1

+

D2

, i, j = 1, 2.

where ‹ > 0 is fixed. Then
� flc(h) = g(‡2

1 , ‡2
2 , fl12, b12) = 2fl12‡1‡2

‡2
1‡2

2

1
1 + (‹ + 1) ÎhÎ

b12

2 1
1 ≠

ÎhÎ
b12

2‹+1

+

� The ML estimator of ◊, ‚◊n, is asymptotically normal. i.e.,!
Òg(◊)€Fn(◊)≠1

Òg(◊)
"≠1/2 (g(‚◊n) ≠ g(◊)) d

≠æ N (0, 1), as n æ Œ.
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An Application
� Two images of size 1600 ◊ 1200 from Harvard Forest have been

considered.

Figure 1: Two images taken from the same site in Harvard Forest, mainly red oak cups. Left: Image

taken with an outdoor StarDot NetCam XL 3MP camera. Right: Image taken with an outdoor Axis 223M

camera.

� Both images have been transformed to a grey scale and
preprocessed.

Spatial Concordance
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Global Model Fitting
� Lin’s concordance: ‚flc = 0.3177.

� We consider a Gaussian the random field (X(s), Y (s))€,
s œ R2.

� We fit a bivariate Matérn covariance model of the form

C11(h) = ‡2
1M(h|‹1, a1),

C22(h) = ‡2
2M(h|‹2, a2),

C12(h) = C21(h) = fl12‡1‡2M(h|‹12, a12).

‡2
1 ‡2

2 fl12 ‹1 ‹2 ‹12 1/a1 1/a2 1/a12
0.04 0.09 -0.12 0.1 0.29 0.99 162.24 162.24 5.64

(0.006) (0.037) (0.214) (0.015) (0.026) (2.002) (65.973) (95.791) (2.9589)
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Results
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Local Model Fitting

� We splitted the original images into 110 rectangular images of
size 19 ◊ 26.

� We fitted bivariate Matérn covariance functions of the form

C11(h) = ‡2
1M(h|‹1, a1),

C22(h) = ‡2
2M(h|‹2, a2),

C12(h) = C21(h) = fl12‡1‡2M(h|‹12, a12).

for the 110 subimages.
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Local Model Fitting

� We compute the global spatial concordance coe�cients

‚fl1(h) = 1
p

pÿ

i=1
‚fl i

c (h),

and

‚fl2(h) = 2‚‡1‚‡2
‚‡2

1 + ‚‡2
2

‚fl12M(h|‚‹12, ‚a12),

where ‡1, ‚‡2, ‚fl12, ‚‹12, and ‚a12 are the average estimations
computed using the 110 subimages.
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Results
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Figure 2: Global concordance coe�cients.
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